{"title":"Quantum Entanglement at the Superradiance of a Condensate of Electron–Hole Pairs in Semiconductor Heterostructures","authors":"P. P. Vasil’ev","doi":"10.1134/S0021364024603348","DOIUrl":null,"url":null,"abstract":"<p>The quantum properties of superradiant pulses generated at the radiative recombination of an electron–hole condensate in semiconductor heterostructures at room temperature have been studied using optical homodyne tomography. Signatures of the quantum entanglement of superradiant states, which are superpositions of two coherent states, have been revealed. It has been demonstrated that reconstructed Wigner functions under certain conditions are very similar to the Wigner functions of the Schrödinger cat states.</p>","PeriodicalId":604,"journal":{"name":"JETP Letters","volume":"120 11","pages":"867 - 872"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0021364024603348.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JETP Letters","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0021364024603348","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The quantum properties of superradiant pulses generated at the radiative recombination of an electron–hole condensate in semiconductor heterostructures at room temperature have been studied using optical homodyne tomography. Signatures of the quantum entanglement of superradiant states, which are superpositions of two coherent states, have been revealed. It has been demonstrated that reconstructed Wigner functions under certain conditions are very similar to the Wigner functions of the Schrödinger cat states.
期刊介绍:
All topics of experimental and theoretical physics including gravitation, field theory, elementary particles and nuclei, plasma, nonlinear phenomena, condensed matter, superconductivity, superfluidity, lasers, and surfaces.