{"title":"Salinity stress affects the demographic characteristics of Frankliniella occidentalis (Thys.: Thripidae) on virus-infected tomato plants","authors":"Maryam Aleosfoor, Lida Fekrat, Kambiz Minaei","doi":"10.1007/s11829-024-10119-9","DOIUrl":null,"url":null,"abstract":"<div><p>Salinization stands out as a harsh environmental stress element that hinders the productivity of crops. Climatic changes, alterations in land utilization, and changes in the salinity levels of irrigation water are the main reasons of rising salinization of soil. Enhanced soil salinity modifies the plant quality, potentially leading to cascading impacts on phytophagous insects. On the other hand, virus infection of host plants can have notable effects on the demographic characteristics of the herbivorous insects including virus vectors. So, in our study we investigated how salinity stress affects the demographic characteristics of <i>Frankliniella occidentalis</i> (WFT) through cherry tomato plant infected with tomato yellow ring virus (TYRV). Despite significant enhancement of adult longevity, oviposition period, and fecundity of WFT on virus-infected plants under no-stress conditions, these parameters were adversely affected by salinity stress, leading to a decline in overall fitness of the WFT. The salinity interfered the development duration of nymphs, adult longevity, and oviposition of WFT. Remarkable differences detected in the intrinsic and finite increase rates as well as the net reproduction rate of WFT under high level of salinity. Salinity had a negative impact on WFT development; nonetheless, population projection forecasted a clear but slower growth trend in WFT population particularly under moderate level of salinity (2.8 dS/m of NaCl), while high level of salinity (4.7 dS/m) led to notable fitness costs in WFT populations. The results imply that WFT may pose a growing threat in both virus-free and virus-infected environments characterized by low to moderate salinity levels, potentially exacerbating the negative impacts of salinity on tomato yields. This study will provide insights into the life table characteristics of WFT in tomato fields infected with tomato yellow ring orthotospovirus, aiding in environmentally friendly management strategies.</p><h3>Graphical Abstract</h3><p>Salinity stress affects western flower thrips, <i>Frankliniella occidentalis</i> (Pergande), by affecting food sources, physiology, and behavior, leading to reduced fitness and increased mortality rates.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8409,"journal":{"name":"Arthropod-Plant Interactions","volume":"19 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthropod-Plant Interactions","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11829-024-10119-9","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Salinization stands out as a harsh environmental stress element that hinders the productivity of crops. Climatic changes, alterations in land utilization, and changes in the salinity levels of irrigation water are the main reasons of rising salinization of soil. Enhanced soil salinity modifies the plant quality, potentially leading to cascading impacts on phytophagous insects. On the other hand, virus infection of host plants can have notable effects on the demographic characteristics of the herbivorous insects including virus vectors. So, in our study we investigated how salinity stress affects the demographic characteristics of Frankliniella occidentalis (WFT) through cherry tomato plant infected with tomato yellow ring virus (TYRV). Despite significant enhancement of adult longevity, oviposition period, and fecundity of WFT on virus-infected plants under no-stress conditions, these parameters were adversely affected by salinity stress, leading to a decline in overall fitness of the WFT. The salinity interfered the development duration of nymphs, adult longevity, and oviposition of WFT. Remarkable differences detected in the intrinsic and finite increase rates as well as the net reproduction rate of WFT under high level of salinity. Salinity had a negative impact on WFT development; nonetheless, population projection forecasted a clear but slower growth trend in WFT population particularly under moderate level of salinity (2.8 dS/m of NaCl), while high level of salinity (4.7 dS/m) led to notable fitness costs in WFT populations. The results imply that WFT may pose a growing threat in both virus-free and virus-infected environments characterized by low to moderate salinity levels, potentially exacerbating the negative impacts of salinity on tomato yields. This study will provide insights into the life table characteristics of WFT in tomato fields infected with tomato yellow ring orthotospovirus, aiding in environmentally friendly management strategies.
Graphical Abstract
Salinity stress affects western flower thrips, Frankliniella occidentalis (Pergande), by affecting food sources, physiology, and behavior, leading to reduced fitness and increased mortality rates.
期刊介绍:
Arthropod-Plant Interactions is dedicated to publishing high quality original papers and reviews with a broad fundamental or applied focus on ecological, biological, and evolutionary aspects of the interactions between insects and other arthropods with plants. Coverage extends to all aspects of such interactions including chemical, biochemical, genetic, and molecular analysis, as well reporting on multitrophic studies, ecophysiology, and mutualism.
Arthropod-Plant Interactions encourages the submission of forum papers that challenge prevailing hypotheses. The journal encourages a diversity of opinion by presenting both invited and unsolicited review papers.