Existence of Approximately Macroscopically Unique States

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Huaxin Lin
{"title":"Existence of Approximately Macroscopically Unique States","authors":"Huaxin Lin","doi":"10.1007/s00220-024-05218-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>H</i> be an infinite dimensional separable Hilbert space and <i>B</i>(<i>H</i>) the <span>\\(C^*\\)</span>-algebra  of bounded operators on <i>H</i>. Suppose that <span>\\(T_1,T_2,..., T_n\\)</span> are self-adjoint operators in <i>B</i>(<i>H</i>). We show that, if commutators <span>\\([T_i, T_j]\\)</span> are sufficiently small in norm, then “Approximately Macroscopically Unique\" states always exist for any values in a synthetic spectrum of the <i>n</i>-tuple of self-adjoint operators. This is achieved under the circumstance for which the <i>n</i>-tuple may not be approximated by commuting ones. This answers a question proposed by David Mumford for measurements in quantum theory. If commutators are not small in norm but small modulo compact operators, then “Approximate Macroscopic Uniqueness\" states also exist.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05218-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Let H be an infinite dimensional separable Hilbert space and B(H) the \(C^*\)-algebra  of bounded operators on H. Suppose that \(T_1,T_2,..., T_n\) are self-adjoint operators in B(H). We show that, if commutators \([T_i, T_j]\) are sufficiently small in norm, then “Approximately Macroscopically Unique" states always exist for any values in a synthetic spectrum of the n-tuple of self-adjoint operators. This is achieved under the circumstance for which the n-tuple may not be approximated by commuting ones. This answers a question proposed by David Mumford for measurements in quantum theory. If commutators are not small in norm but small modulo compact operators, then “Approximate Macroscopic Uniqueness" states also exist.

近似宏观唯一态的存在性
设H为无限维可分离希尔伯特空间,B(H)为H上有界算子的\(C^*\) -代数,设\(T_1,T_2,..., T_n\)为B(H)上的自伴随算子。我们证明了,如果对易子\([T_i, T_j]\)在范数上足够小,那么对于n元自伴随算子组的合成谱中的任何值总是存在“近似宏观唯一”状态。这是在n元组不能通过交换来近似的情况下实现的。这就回答了大卫·芒福德在量子论中提出的测量问题。如果换向子范数不小而模紧算子小,则“近似宏观唯一性”状态也存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信