{"title":"MorphFlow: Estimating Motion in In-Situ Tests of Concrete","authors":"T. Nogatz, C. Redenbach, K. Schladitz","doi":"10.1007/s11340-024-01104-7","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p><i>In situ</i> Computed Tomography is a valuable tool to investigate failure mechanics of materials in 3D. For brittle materials with sudden fracture like concrete however, state-of-the-art methods such as Digital Volume Correlation fail to produce displacement fields that display the discontinuous behavior of load induced cracking correctly.</p><h3>Objective</h3><p>The main objective is to develop an algorithm that calculates displacement fields for large-scale <i>in situ</i> experiments on concrete.</p><h3>Methods</h3><p>The algorithm presented is based on a 3D Optical Flow method solved by a primal-dual procedure and equipped with a coarse-to-fine scheme based on morphological wavelets. The algorithm is publicly available. Our evaluation focuses on the beneficial use of morphological wavelets over classical ones, and on the ability to produce reliable results with limited data. Applying the primal-dual scheme to <i>in situ</i> tests and using morphological wavelets are novel contributions.</p><h3>Results</h3><p>The results show that our algorithm cannot only cope with large volume images, but also produces discontinuous displacement fields that yield high strain in fractured regions. It does not only perform better than state-of-the-art methods, but also achieves sufficient results on reduced data. The morphological wavelets play a key role in this finding - they even allow to deduce cracks of widths less than a voxel.</p><h3>Conclusion</h3><p>Displacement calculation for <i>in situ</i> tests of brittle materials requires voxel-accurate displacement fields that allow for discontinuities. The presented algorithm fulfills these requirements and therefore is a powerful tool for future understanding of failure mechanics in concrete.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"65 1","pages":"35 - 53"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11340-024-01104-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11340-024-01104-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Background
In situ Computed Tomography is a valuable tool to investigate failure mechanics of materials in 3D. For brittle materials with sudden fracture like concrete however, state-of-the-art methods such as Digital Volume Correlation fail to produce displacement fields that display the discontinuous behavior of load induced cracking correctly.
Objective
The main objective is to develop an algorithm that calculates displacement fields for large-scale in situ experiments on concrete.
Methods
The algorithm presented is based on a 3D Optical Flow method solved by a primal-dual procedure and equipped with a coarse-to-fine scheme based on morphological wavelets. The algorithm is publicly available. Our evaluation focuses on the beneficial use of morphological wavelets over classical ones, and on the ability to produce reliable results with limited data. Applying the primal-dual scheme to in situ tests and using morphological wavelets are novel contributions.
Results
The results show that our algorithm cannot only cope with large volume images, but also produces discontinuous displacement fields that yield high strain in fractured regions. It does not only perform better than state-of-the-art methods, but also achieves sufficient results on reduced data. The morphological wavelets play a key role in this finding - they even allow to deduce cracks of widths less than a voxel.
Conclusion
Displacement calculation for in situ tests of brittle materials requires voxel-accurate displacement fields that allow for discontinuities. The presented algorithm fulfills these requirements and therefore is a powerful tool for future understanding of failure mechanics in concrete.
期刊介绍:
Experimental Mechanics is the official journal of the Society for Experimental Mechanics that publishes papers in all areas of experimentation including its theoretical and computational analysis. The journal covers research in design and implementation of novel or improved experiments to characterize materials, structures and systems. Articles extending the frontiers of experimental mechanics at large and small scales are particularly welcome.
Coverage extends from research in solid and fluids mechanics to fields at the intersection of disciplines including physics, chemistry and biology. Development of new devices and technologies for metrology applications in a wide range of industrial sectors (e.g., manufacturing, high-performance materials, aerospace, information technology, medicine, energy and environmental technologies) is also covered.