Low-Velocity Impact Performance of 3-D Woven Composite Tubes with Different Structure

IF 2.3 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
Xiaozhou Gong, Yao Song, Ying Chai, Jiaxuan Wang, Yang Liu, Yiwei Ouyang
{"title":"Low-Velocity Impact Performance of 3-D Woven Composite Tubes with Different Structure","authors":"Xiaozhou Gong,&nbsp;Yao Song,&nbsp;Ying Chai,&nbsp;Jiaxuan Wang,&nbsp;Yang Liu,&nbsp;Yiwei Ouyang","doi":"10.1007/s10443-024-10270-9","DOIUrl":null,"url":null,"abstract":"<div><p>Three-dimensional woven tubular composites (3DWTCs) exhibit exceptional structural integrity and superior interlaminar shear resistance, making them highly promising candidates for energy absorption components in a wide range of applications. This paper aims to evaluate the impact response of 3DWTCs with varying structures through low-velocity impact experiments. Three types of 3DWTCs, namely shallow cross-linked (SCL), shallow-crossed curved joint (SCCL), and through orthogonal (TO), were fabricated using basalt fiber bundles and epoxy resin via the vacuum-assisted resin transfer molding (VARTM) process. Low-velocity impact tests were conducted at energy levels of 5, 10, and 20 J. To evaluate the damage characteristics of 3DWTCs, the observations were analyzed in terms of load-time curves, load-displacement curves, energy-time curves, and failure morphologies. The results indicate that the SCL structure exhibits superior impact resistance, followed by SCCL, while the TO structure displays the lowest. This study provides valuable insights into the potential applications of 3DWTCs in the aerospace industry and other sectors.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"32 1","pages":"77 - 92"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-024-10270-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Three-dimensional woven tubular composites (3DWTCs) exhibit exceptional structural integrity and superior interlaminar shear resistance, making them highly promising candidates for energy absorption components in a wide range of applications. This paper aims to evaluate the impact response of 3DWTCs with varying structures through low-velocity impact experiments. Three types of 3DWTCs, namely shallow cross-linked (SCL), shallow-crossed curved joint (SCCL), and through orthogonal (TO), were fabricated using basalt fiber bundles and epoxy resin via the vacuum-assisted resin transfer molding (VARTM) process. Low-velocity impact tests were conducted at energy levels of 5, 10, and 20 J. To evaluate the damage characteristics of 3DWTCs, the observations were analyzed in terms of load-time curves, load-displacement curves, energy-time curves, and failure morphologies. The results indicate that the SCL structure exhibits superior impact resistance, followed by SCCL, while the TO structure displays the lowest. This study provides valuable insights into the potential applications of 3DWTCs in the aerospace industry and other sectors.

不同结构三维编织复合材料管的低速冲击性能
三维编织管复合材料(3dwtc)具有优异的结构完整性和超强的层间抗剪切能力,使其成为广泛应用的能量吸收部件的极具前景的候选者。本文旨在通过低速冲击试验,评价不同结构的3dwtc的冲击响应。以玄武岩纤维束和环氧树脂为原料,采用真空辅助树脂传递模塑(VARTM)工艺制备了浅交联(SCL)、浅交叉弯曲连接(SCCL)和正交(TO)三种类型的3dwtc。为了评估3dwtc在5、10和20 j能量水平下的损伤特征,从载荷-时间曲线、载荷-位移曲线、能量-时间曲线和破坏形态等方面分析了观察结果。结果表明,SCL结构的抗冲击性能最好,SCCL次之,而TO结构的抗冲击性能最低。这项研究为3dwtc在航空航天工业和其他领域的潜在应用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Composite Materials
Applied Composite Materials 工程技术-材料科学:复合
CiteScore
4.20
自引率
4.30%
发文量
81
审稿时长
1.6 months
期刊介绍: Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes. Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信