Discrete reflexivity in topological groups and function spaces

IF 0.6 3区 数学 Q3 MATHEMATICS
V. V. Tkachuk
{"title":"Discrete reflexivity in topological groups and function spaces","authors":"V. V. Tkachuk","doi":"10.1007/s10474-024-01479-y","DOIUrl":null,"url":null,"abstract":"<div><p>We show that pseudocharacter turns out to be discretely reflexive\nin Lindelöf <span>\\(\\Sigma\\)</span>-groups but countable tightness is not\ndiscretely reflexive in hereditarily Lindelöf spaces. We also\nestablish that it is independent of ZFC whether countable\ncharacter, countable weight or countable network weight is\ndiscretely reflexive in spaces <span>\\(C_p(X)\\)</span>. Furthermore, we prove\nthat any hereditary topological property is discretely reflexive\nin spaces <span>\\(C_p(X)\\)</span> with the Lindelöf <span>\\(\\Sigma\\)</span>-property. If\n<span>\\(C_p(X)\\)</span> is a Lindelöf <span>\\(\\Sigma\\)</span>-space and <span>\\(L D\\)</span> is a\n<span>\\(k\\)</span>-space for any discrete subspace <span>\\( { D C_p(X) } \\)</span>, then it is\nconsistent with ZFC that <span>\\(C_p(X)\\)</span> has the Fréchet–Urysohn\nproperty. Our results solve two published open questions. \n</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"174 2","pages":"498 - 509"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01479-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that pseudocharacter turns out to be discretely reflexive in Lindelöf \(\Sigma\)-groups but countable tightness is not discretely reflexive in hereditarily Lindelöf spaces. We also establish that it is independent of ZFC whether countable character, countable weight or countable network weight is discretely reflexive in spaces \(C_p(X)\). Furthermore, we prove that any hereditary topological property is discretely reflexive in spaces \(C_p(X)\) with the Lindelöf \(\Sigma\)-property. If \(C_p(X)\) is a Lindelöf \(\Sigma\)-space and \(L D\) is a \(k\)-space for any discrete subspace \( { D C_p(X) } \), then it is consistent with ZFC that \(C_p(X)\) has the Fréchet–Urysohn property. Our results solve two published open questions.

拓扑群与函数空间中的离散自反性
我们证明了伪特征在Lindelöf \(\Sigma\) -群中是离散自反的,但可数紧性在遗传Lindelöf空间中不是离散自反的。我们还证明了可数字符、可数权值或可数网络权值在空间\(C_p(X)\)中是否离散自反与ZFC无关。进一步,我们用Lindelöf \(\Sigma\) -性质证明了任何遗传拓扑性质都是离散自反空间\(C_p(X)\)。如果\(C_p(X)\)是一个Lindelöf \(\Sigma\) -空间,\(L D\)是任意离散子空间\( { D C_p(X) } \)的一个\(k\) -空间,那么\(C_p(X)\)具有fr cheet - urysohnproperty与ZFC一致。我们的研究结果解决了两个公开的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信