{"title":"Characterization of Environmental Stress Cracking in Polymers Through a Modified Bent Strip Test Method","authors":"Y. Zhang, L. Wu, B. Jar, X. Xing","doi":"10.1007/s11340-024-01129-y","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The environmental stress cracking resistance (ESCR) of polymers is characterized most conveniently by the bent strip method standardized as ASTM D1693. The method has, however, suffered from poor reproducibility of the ESCR results.</p><h3>Objective</h3><p>In this study we propose modifications on the standardized method to reduce the variability of the ESCR results.</p><h3>Methods</h3><p>The notch is introduced to the specimens with the aid of automate testing machine instead of manual notching. The proposed method is then applied for a systematic investigation on the influence notch offset distance, notch inclination angle, notch depth on the environmental stress cracking behavior of polyethylene material.</p><h3>Results</h3><p>The results reveal interesting phenomenon that crack initiation occurs at the interior point between the endpoint and the middle of the notch, instead of at the middle point of the notch, where the maximum stress or strain is located. Finite element simulation has been conducted to elucidate root cause of this phenomenon. It has been found that the crack initiates at a point that is very close to the position of the maximum stress triaxiality, although the crack initiation position shifts slightly toward the position of the maximum stress or strain.</p><h3>Conclusions</h3><p>As a result, the crack initiation is controlled by the stress, strain and stress triaxiality, but stress triaxiality plays a dominant role in the initiation of environmental stress cracking.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"65 1","pages":"157 - 173"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11340-024-01129-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The environmental stress cracking resistance (ESCR) of polymers is characterized most conveniently by the bent strip method standardized as ASTM D1693. The method has, however, suffered from poor reproducibility of the ESCR results.
Objective
In this study we propose modifications on the standardized method to reduce the variability of the ESCR results.
Methods
The notch is introduced to the specimens with the aid of automate testing machine instead of manual notching. The proposed method is then applied for a systematic investigation on the influence notch offset distance, notch inclination angle, notch depth on the environmental stress cracking behavior of polyethylene material.
Results
The results reveal interesting phenomenon that crack initiation occurs at the interior point between the endpoint and the middle of the notch, instead of at the middle point of the notch, where the maximum stress or strain is located. Finite element simulation has been conducted to elucidate root cause of this phenomenon. It has been found that the crack initiates at a point that is very close to the position of the maximum stress triaxiality, although the crack initiation position shifts slightly toward the position of the maximum stress or strain.
Conclusions
As a result, the crack initiation is controlled by the stress, strain and stress triaxiality, but stress triaxiality plays a dominant role in the initiation of environmental stress cracking.
期刊介绍:
Experimental Mechanics is the official journal of the Society for Experimental Mechanics that publishes papers in all areas of experimentation including its theoretical and computational analysis. The journal covers research in design and implementation of novel or improved experiments to characterize materials, structures and systems. Articles extending the frontiers of experimental mechanics at large and small scales are particularly welcome.
Coverage extends from research in solid and fluids mechanics to fields at the intersection of disciplines including physics, chemistry and biology. Development of new devices and technologies for metrology applications in a wide range of industrial sectors (e.g., manufacturing, high-performance materials, aerospace, information technology, medicine, energy and environmental technologies) is also covered.