Serhat Tonkul, Laurent André, Alper Baba, Mustafa M. Demir, Simona Regenspurg, Katrin Kieling
{"title":"Effect of degassing on scaling in hypersaline system: Tuzla geothermal field, Turkey","authors":"Serhat Tonkul, Laurent André, Alper Baba, Mustafa M. Demir, Simona Regenspurg, Katrin Kieling","doi":"10.1186/s40517-024-00320-7","DOIUrl":null,"url":null,"abstract":"<div><p>A serious issue with geothermal power plants is the loss of production and decline in power plant efficiency. Scaling, also known as mineral precipitation, is one of the frequently-observed issue that causes this loss and decreasing efficiency. It is heavily observed in the production wells when the geothermal fluid rises from the depths due to a change in the fluid’s physical and chemical properties. Scaling issue in geothermal power plants result in significant output losses and lower plant effectiveness. In rare instances, it might even result in the power plant being shut down. The chemistry of the geothermal fluid, non-condensable gases, pH, temperature and pressure changes in the process from production to reinjection, power plant type and design, and sometimes the materials used can also play an active role in the scaling that will occur in a geothermal system. ICP–MS was used to evaluate the chemical properties of the fluids. On the other hand, XRD, XRF and SEM were used to investigate the chemical and mineralogical compositions of the scale samples in analytical methods. For the numerical approach, PhreeqC and GWELL codes were used to follow the chemical reactivity of the geothermal fluid in Tuzla production well. The novelty of this study is to determine potential degassing point and to characterize the mineralogical assemblage formed in the well because of the fluid composition, temperature and pressure variations. During production, geothermal fluids degas in the wellbore. This causes a drastic modification of the chemistry of the Tuzla fluids. This is why it is focused the calculations on the nature of the minerals that are able to precipitate inside the well. According to simulation results, the degassing point is estimated to be about 105 m depth, consistent with the field observations. If a small quantity of precipitated minerals is predicted before the boiling point, degassing significantly changes the fluid chemistry, and the model predicts the deposition of calcite along with smaller elements including galena, barite, and quartz. The simulation results are consistent with the mineral composition of scaling collected in the well.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"13 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00320-7","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-024-00320-7","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
A serious issue with geothermal power plants is the loss of production and decline in power plant efficiency. Scaling, also known as mineral precipitation, is one of the frequently-observed issue that causes this loss and decreasing efficiency. It is heavily observed in the production wells when the geothermal fluid rises from the depths due to a change in the fluid’s physical and chemical properties. Scaling issue in geothermal power plants result in significant output losses and lower plant effectiveness. In rare instances, it might even result in the power plant being shut down. The chemistry of the geothermal fluid, non-condensable gases, pH, temperature and pressure changes in the process from production to reinjection, power plant type and design, and sometimes the materials used can also play an active role in the scaling that will occur in a geothermal system. ICP–MS was used to evaluate the chemical properties of the fluids. On the other hand, XRD, XRF and SEM were used to investigate the chemical and mineralogical compositions of the scale samples in analytical methods. For the numerical approach, PhreeqC and GWELL codes were used to follow the chemical reactivity of the geothermal fluid in Tuzla production well. The novelty of this study is to determine potential degassing point and to characterize the mineralogical assemblage formed in the well because of the fluid composition, temperature and pressure variations. During production, geothermal fluids degas in the wellbore. This causes a drastic modification of the chemistry of the Tuzla fluids. This is why it is focused the calculations on the nature of the minerals that are able to precipitate inside the well. According to simulation results, the degassing point is estimated to be about 105 m depth, consistent with the field observations. If a small quantity of precipitated minerals is predicted before the boiling point, degassing significantly changes the fluid chemistry, and the model predicts the deposition of calcite along with smaller elements including galena, barite, and quartz. The simulation results are consistent with the mineral composition of scaling collected in the well.
Geothermal EnergyEarth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍:
Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.