H. M. Varner, S. K. Naghibzadeh, K. C. Spaeth, A. Klein, T. Cohen
{"title":"Evolving Properties of Biological Materials Captured via Needle-Based Cavity Expansion Method","authors":"H. M. Varner, S. K. Naghibzadeh, K. C. Spaeth, A. Klein, T. Cohen","doi":"10.1007/s11340-024-01128-z","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The mechanical properties of biological tissues change over time and with disease progression. Quantifying these mechanical properties can thus be instrumental for medical diagnosis and for evaluation of tissue viability for transplant. However, soft and biological materials are exceptionally challenging to mechanically characterize using conventional testing methods, which are hindered by limitations of sample size, fixturing capabilities, and sample preparation.</p><h3>Objective</h3><p>We hypothesize that Volume Controlled Cavity Expansion (VCCE) is well-suited to capture subtle mechanical differences in biological tissue. The objective of this work is therefore twofold: first, we seek to quantify how stiffness of liver and gelatin evolve with age. In achieving this understanding, we aim to demonstrate the precision of VCCE in measuring subtle changes in the mechanical properties of biological tissues.</p><h3>Methods</h3><p>Performing VCCE tests over 15 days in samples of gelatin and liver (porcine and bovine), we track the evolving pressure-volume response and deformation limits of the materials.</p><h3>Results</h3><p>In both materials, we observed time-dependent variation of the stiffness and fracture thresholds. In gelatin VCCE repeatably captured stiffening over time, which was correlated with a higher fracture stress. This was in contrast to observations in bovine liver, where stiffening corresponded to a lower fracture stress. Porcine liver initially stiffened, then reversed this trend and relaxed.</p><h3>Conclusion</h3><p>Through this work we show that liver and gelatin stiffen with age, and that this trend is measurable via VCCE. These results highlight the utility of VCCE and call attention to the need for a new class of mechanism based constitutive models that are capable of capturing variations in material over time with a minimal number of parameters.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"65 1","pages":"141 - 155"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11340-024-01128-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The mechanical properties of biological tissues change over time and with disease progression. Quantifying these mechanical properties can thus be instrumental for medical diagnosis and for evaluation of tissue viability for transplant. However, soft and biological materials are exceptionally challenging to mechanically characterize using conventional testing methods, which are hindered by limitations of sample size, fixturing capabilities, and sample preparation.
Objective
We hypothesize that Volume Controlled Cavity Expansion (VCCE) is well-suited to capture subtle mechanical differences in biological tissue. The objective of this work is therefore twofold: first, we seek to quantify how stiffness of liver and gelatin evolve with age. In achieving this understanding, we aim to demonstrate the precision of VCCE in measuring subtle changes in the mechanical properties of biological tissues.
Methods
Performing VCCE tests over 15 days in samples of gelatin and liver (porcine and bovine), we track the evolving pressure-volume response and deformation limits of the materials.
Results
In both materials, we observed time-dependent variation of the stiffness and fracture thresholds. In gelatin VCCE repeatably captured stiffening over time, which was correlated with a higher fracture stress. This was in contrast to observations in bovine liver, where stiffening corresponded to a lower fracture stress. Porcine liver initially stiffened, then reversed this trend and relaxed.
Conclusion
Through this work we show that liver and gelatin stiffen with age, and that this trend is measurable via VCCE. These results highlight the utility of VCCE and call attention to the need for a new class of mechanism based constitutive models that are capable of capturing variations in material over time with a minimal number of parameters.
期刊介绍:
Experimental Mechanics is the official journal of the Society for Experimental Mechanics that publishes papers in all areas of experimentation including its theoretical and computational analysis. The journal covers research in design and implementation of novel or improved experiments to characterize materials, structures and systems. Articles extending the frontiers of experimental mechanics at large and small scales are particularly welcome.
Coverage extends from research in solid and fluids mechanics to fields at the intersection of disciplines including physics, chemistry and biology. Development of new devices and technologies for metrology applications in a wide range of industrial sectors (e.g., manufacturing, high-performance materials, aerospace, information technology, medicine, energy and environmental technologies) is also covered.