{"title":"Flat Quasi-coherent Sheaves as Directed Colimits, and Quasi-coherent Cotorsion Periodicity","authors":"Leonid Positselski, Jan Š’ovíček","doi":"10.1007/s10468-024-10296-4","DOIUrl":null,"url":null,"abstract":"<div><p>We show that every flat quasi-coherent sheaf on a quasi-compact quasi-separated scheme is a directed colimit of locally countably presentable flat quasi-coherent sheaves. More generally, the same assertion holds for any countably quasi-compact, countably quasi-separated scheme. Moreover, for three categories of complexes of flat quasi-coherent sheaves, we show that all complexes in the category can be obtained as directed colimits of complexes of locally countably presentable flat quasi-coherent sheaves from the same category. In particular, on a quasi-compact semi-separated scheme, every flat quasi-coherent sheaf is a directed colimit of flat quasi-coherent sheaves of finite projective dimension. In the second part of the paper, we discuss cotorsion periodicity in category-theoretic context, generalizing an argument of Bazzoni, Cortés-Izurdiaga, and Estrada. As the main application, we deduce the assertion that any cotorsion-periodic quasi-coherent sheaf on a quasi-compact semi-separated scheme is cotorsion.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 6","pages":"2267 - 2293"},"PeriodicalIF":0.5000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-024-10296-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10296-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show that every flat quasi-coherent sheaf on a quasi-compact quasi-separated scheme is a directed colimit of locally countably presentable flat quasi-coherent sheaves. More generally, the same assertion holds for any countably quasi-compact, countably quasi-separated scheme. Moreover, for three categories of complexes of flat quasi-coherent sheaves, we show that all complexes in the category can be obtained as directed colimits of complexes of locally countably presentable flat quasi-coherent sheaves from the same category. In particular, on a quasi-compact semi-separated scheme, every flat quasi-coherent sheaf is a directed colimit of flat quasi-coherent sheaves of finite projective dimension. In the second part of the paper, we discuss cotorsion periodicity in category-theoretic context, generalizing an argument of Bazzoni, Cortés-Izurdiaga, and Estrada. As the main application, we deduce the assertion that any cotorsion-periodic quasi-coherent sheaf on a quasi-compact semi-separated scheme is cotorsion.
期刊介绍:
Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups.
The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.