Investigating the Structural, Electronic, Magnetic, Mechanical, Anisotropic and Optical Aspects of CoFeYSb (Y = V and Ti) Quaternary Heusler Alloys from First Principles
I. Bensehil, H. Baaziz, T. Ghellab, F. Djeghloul, S. Zaiou, A. Kolli, N. Guechi, Z. Charifi
{"title":"Investigating the Structural, Electronic, Magnetic, Mechanical, Anisotropic and Optical Aspects of CoFeYSb (Y = V and Ti) Quaternary Heusler Alloys from First Principles","authors":"I. Bensehil, H. Baaziz, T. Ghellab, F. Djeghloul, S. Zaiou, A. Kolli, N. Guechi, Z. Charifi","doi":"10.1007/s10948-024-06898-0","DOIUrl":null,"url":null,"abstract":"<div><p>This study employs first-principles calculations to explore the structural, elastic, electronic, magnetic, and optical properties of the quaternary Heusler compounds CoFeYSb (Y = V, Ti). The structural analysis confirms that both compounds are most stable in the YI configuration. CoFeVSb is found to exhibit ferromagnetic behavior, while CoFeTiSb shows ferrimagnetism. Elastic constants, cohesion energy, and formation energy calculations further validate the stability of the magnetic (I) phase for both materials. Band structure analysis reveals that these compounds are half-metallic, achieving 100% spin polarization at the Fermi level, with spin-down energy gaps of 0.55 eV for CoFeVSb and 0.61 eV for CoFeTiSb. The total magnetic moments comply with the Slater-Pauling 24-electron rule, with values of 3 μB for CoFeVSb and 2 μB for CoFeTiSb. Optical investigations, including the dielectric function, absorption coefficient, and energy loss function, demonstrate strong absorption in the visible and ultraviolet ranges. These results highlight the potential of CoFeYSb compounds for advanced optoelectronic and spintronic applications, offering new opportunities for their integration into electronic and photonic technologies.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-024-06898-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study employs first-principles calculations to explore the structural, elastic, electronic, magnetic, and optical properties of the quaternary Heusler compounds CoFeYSb (Y = V, Ti). The structural analysis confirms that both compounds are most stable in the YI configuration. CoFeVSb is found to exhibit ferromagnetic behavior, while CoFeTiSb shows ferrimagnetism. Elastic constants, cohesion energy, and formation energy calculations further validate the stability of the magnetic (I) phase for both materials. Band structure analysis reveals that these compounds are half-metallic, achieving 100% spin polarization at the Fermi level, with spin-down energy gaps of 0.55 eV for CoFeVSb and 0.61 eV for CoFeTiSb. The total magnetic moments comply with the Slater-Pauling 24-electron rule, with values of 3 μB for CoFeVSb and 2 μB for CoFeTiSb. Optical investigations, including the dielectric function, absorption coefficient, and energy loss function, demonstrate strong absorption in the visible and ultraviolet ranges. These results highlight the potential of CoFeYSb compounds for advanced optoelectronic and spintronic applications, offering new opportunities for their integration into electronic and photonic technologies.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.