{"title":"Azimuthal asymmetries in lepton and heavy-quark pair production in UPCs","authors":"Daniël Boer, Luca Maxia, Cristian Pisano","doi":"10.1007/JHEP01(2025)076","DOIUrl":null,"url":null,"abstract":"<p>Azimuthal modulations in lepton and heavy-quark pair production in ultraperipheral collisions (UPCs) of highly charged ions are investigated. The modulations in the azimuthal angles of the sum and difference of the transverse momenta of the pair of particles in the final state, as well as of the transverse impact parameter, arise from the collisions of unpolarized and polarized photons. A full description of the cross section in terms of Generalized Transverse Momentum Dependent parton distributions (GTMDs) for photons is given including a careful consideration of the Fourier transform to impact parameter space. In particular, this leads to a feed-in mechanism among harmonics of different orders, which in principle generates harmonics of all (even) orders. Wherever comparable, our analytical results for the azimuthal modulations agree with those presented in other papers on this topic. Compared to these other works, we separate effects that arise from the anisotropies of the GTMDs from those that do not and retain terms proportional to the mass of the produced particles, as they are relevant for muon, charm and bottom quark production. We show that the normalized differential cross section changes considerably with the produced particle mass, which should be discernible in UPCs at RHIC and LHC. For the numerical results we adopt several models for the photon GTMD correlator, and find that all of them are in fairly good agreement with each other and with UPC data from STAR. We also present results for various azimuthal modulations for RHIC kinematics, where we compare <i>e</i><sup>+</sup><i>e</i><sup>−</sup> production with the production of heavier particles, and for LHC kinematics, focusing on <i>μ</i><sup>+</sup><i>μ</i><sup>−</sup> production. These results exhibit interesting mass-dependent features in the asymmetries that may help study the anisotropies arising from the underlying photon GTMD description.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)076.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP01(2025)076","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Azimuthal modulations in lepton and heavy-quark pair production in ultraperipheral collisions (UPCs) of highly charged ions are investigated. The modulations in the azimuthal angles of the sum and difference of the transverse momenta of the pair of particles in the final state, as well as of the transverse impact parameter, arise from the collisions of unpolarized and polarized photons. A full description of the cross section in terms of Generalized Transverse Momentum Dependent parton distributions (GTMDs) for photons is given including a careful consideration of the Fourier transform to impact parameter space. In particular, this leads to a feed-in mechanism among harmonics of different orders, which in principle generates harmonics of all (even) orders. Wherever comparable, our analytical results for the azimuthal modulations agree with those presented in other papers on this topic. Compared to these other works, we separate effects that arise from the anisotropies of the GTMDs from those that do not and retain terms proportional to the mass of the produced particles, as they are relevant for muon, charm and bottom quark production. We show that the normalized differential cross section changes considerably with the produced particle mass, which should be discernible in UPCs at RHIC and LHC. For the numerical results we adopt several models for the photon GTMD correlator, and find that all of them are in fairly good agreement with each other and with UPC data from STAR. We also present results for various azimuthal modulations for RHIC kinematics, where we compare e+e− production with the production of heavier particles, and for LHC kinematics, focusing on μ+μ− production. These results exhibit interesting mass-dependent features in the asymmetries that may help study the anisotropies arising from the underlying photon GTMD description.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).