C. Bray, S. Fretwell, I. Kim, W. K. Warburton, F. Ponce, K. G. Leach, S. Friedrich, R. Abells, P. Amaro, A. Andoche, R. Cantor, D. Diercks, M. Guerra, A. Hall, C. Harris, J. T. Harris, L. Hayen, P. A. Hervieux, G. B. Kim, A. Lennarz, V. Lordi, J. Machado, P. Machule, A. Marino, D. McKeen, X. Mougeot, C. Ruiz, A. Samanta, J. P. Santos, C. Stone-Whitehead
{"title":"The Data Acquisition System for Phase-III of the BeEST Experiment","authors":"C. Bray, S. Fretwell, I. Kim, W. K. Warburton, F. Ponce, K. G. Leach, S. Friedrich, R. Abells, P. Amaro, A. Andoche, R. Cantor, D. Diercks, M. Guerra, A. Hall, C. Harris, J. T. Harris, L. Hayen, P. A. Hervieux, G. B. Kim, A. Lennarz, V. Lordi, J. Machado, P. Machule, A. Marino, D. McKeen, X. Mougeot, C. Ruiz, A. Samanta, J. P. Santos, C. Stone-Whitehead","doi":"10.1007/s10909-024-03242-7","DOIUrl":null,"url":null,"abstract":"<div><p>The BeEST experiment is a precision laboratory search for physics beyond the standard model that measures the electron capture decay of <span>\\(^7\\)</span>Be implanted into superconducting tunnel junction (STJ) detectors. For Phase-III of the experiment, we constructed a continuously sampling data acquisition system to extract pulse shape and timing information from 16 STJ pixels offline. Four additional pixels are read out with a fast list-mode digitizer, and one with a nuclear MCA already used in the earlier limit-setting phases of the experiment. We present the performance of the data acquisition system and discuss the relative advantages of the different digitizers.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"218 Part 5","pages":"74 - 82"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-024-03242-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The BeEST experiment is a precision laboratory search for physics beyond the standard model that measures the electron capture decay of \(^7\)Be implanted into superconducting tunnel junction (STJ) detectors. For Phase-III of the experiment, we constructed a continuously sampling data acquisition system to extract pulse shape and timing information from 16 STJ pixels offline. Four additional pixels are read out with a fast list-mode digitizer, and one with a nuclear MCA already used in the earlier limit-setting phases of the experiment. We present the performance of the data acquisition system and discuss the relative advantages of the different digitizers.
期刊介绍:
The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.