Henry H. M. Moldenhauer, Stephen D. Holland, Ashraf Bastawros
{"title":"Incremental closure method to estimate changes in contact stress distributions for partially closed fatigue cracks in mode I loading","authors":"Henry H. M. Moldenhauer, Stephen D. Holland, Ashraf Bastawros","doi":"10.1007/s10704-024-00833-z","DOIUrl":null,"url":null,"abstract":"<div><p>Crack closure is the phenomenon of fatigue cracks experiencing compressive contact stresses between crack faces, even under no remote load. Applied remote loads alter the distribution of contact stresses and opening displacements along the crack plane. A nondestructive evaluation technique, vibrothermography, motivated calculating these distributions as a function of remote load, to model crack motion during the vibrothermographic process. The proposed incremental closure method estimates such distributions using a two-stage superposition of crack tip solutions. The first, superimposes a continuum of crack tip solutions over a short, explicit peeling increment at the effective crack tip. The second, superimposes these increments over a range of effective crack tip positions. This approach provides a fast, straightforward way to characterize the peeling open of partially closed cracks. This method can be applied inversely to determine the preexisting closure state. Predictions from this method compare well with finite element simulations of the crack peeling process.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-024-00833-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Crack closure is the phenomenon of fatigue cracks experiencing compressive contact stresses between crack faces, even under no remote load. Applied remote loads alter the distribution of contact stresses and opening displacements along the crack plane. A nondestructive evaluation technique, vibrothermography, motivated calculating these distributions as a function of remote load, to model crack motion during the vibrothermographic process. The proposed incremental closure method estimates such distributions using a two-stage superposition of crack tip solutions. The first, superimposes a continuum of crack tip solutions over a short, explicit peeling increment at the effective crack tip. The second, superimposes these increments over a range of effective crack tip positions. This approach provides a fast, straightforward way to characterize the peeling open of partially closed cracks. This method can be applied inversely to determine the preexisting closure state. Predictions from this method compare well with finite element simulations of the crack peeling process.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.