Ellis' theorem, minimal left ideals, and minimal/maximal idempotents without \(\mathsf{AC}\)

IF 0.6 3区 数学 Q3 MATHEMATICS
E. Tachtsis
{"title":"Ellis' theorem, minimal left ideals, and minimal/maximal idempotents without \\(\\mathsf{AC}\\)","authors":"E. Tachtsis","doi":"10.1007/s10474-024-01494-z","DOIUrl":null,"url":null,"abstract":"<div><p>In [18], we showed that the Boolean prime ideal theorem (<span>\\(\\mathsf{BPI}\\)</span>) suffices to prove the celebrated theorem of R. Ellis, which states: ``Every compact Hausdorff right topological semigroup has an idempotent element''. However, the natural and intriguing question of the status of the reverse implication remained open until now. We resolve this open problem in the setting of <span>\\(\\mathsf{ZFA}\\)</span> (Zermelo–Fraenkel set theory with atoms), namely we establish that Ellis' theorem does not imply <span>\\(\\mathsf{BPI}\\)</span> in <span>\\(\\mathsf{ZFA}\\)</span>, and thus is strictly weaker than <span>\\(\\mathsf{BPI}\\)</span> in <span>\\(\\mathsf{ZFA}\\)</span>. From the above paper, we also answer two more open questions and strengthen some theorems.</p><p>Typical results are:</p><p>1. Ellis' theorem is true in the Basic Fraenkel Model, and thus Ellis' theorem does not imply <span>\\(\\mathsf{BPI}\\)</span> in <span>\\(\\mathsf{ZFA}\\)</span>.</p><p>2. In <span>\\(\\mathsf{ZF}\\)</span> (Zermelo–Fraenkel set theory without the Axiom of Choice (<span>\\(\\mathsf{AC}\\)</span>)), if <span>\\(S\\)</span> is a compact Hausdorff right topological semigroup with <span>\\(S\\)</span> well orderable, then every left ideal of <span>\\(S\\)</span> contains a minimal left ideal and a minimal idempotent element. In addition, every such semigroup <span>\\(S\\)</span> has a maximal idempotent element.</p><p>3. In <span>\\(\\mathsf{ZF}\\)</span>, if <span>\\(S\\)</span> is a compact Hausdorff right topological abelian semigroup, then every left ideal of <span>\\(S\\)</span> contains a minimal left ideal.</p><p>4. In <span>\\(\\mathsf{ZF}\\)</span>, <span>\\(\\mathsf{BPI}\\)</span> implies ``Every compact Hausdorff right topological abelian semigroup <span>\\(S\\)</span> has a minimal idempotent element''.</p><p>5. In <span>\\(\\mathsf{ZFA}\\)</span>, the Axiom of Multiple Choice (<span>\\(\\mathsf{MC}\\)</span>) implies ``Every compact Hausdorff right topological abelian semigroup <span>\\(S\\)</span> has a minimal idempotent element''.</p><p>6. In <span>\\(\\mathsf{ZFA}\\)</span>, <span>\\(\\mathsf{MC}\\)</span> implies ``Every compact Hausdorff right topological semigroup <span>\\(S\\)</span> with <span>\\(S\\)</span> linearly orderable, has a minimal idempotent element''.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"174 2","pages":"545 - 569"},"PeriodicalIF":0.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01494-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In [18], we showed that the Boolean prime ideal theorem (\(\mathsf{BPI}\)) suffices to prove the celebrated theorem of R. Ellis, which states: ``Every compact Hausdorff right topological semigroup has an idempotent element''. However, the natural and intriguing question of the status of the reverse implication remained open until now. We resolve this open problem in the setting of \(\mathsf{ZFA}\) (Zermelo–Fraenkel set theory with atoms), namely we establish that Ellis' theorem does not imply \(\mathsf{BPI}\) in \(\mathsf{ZFA}\), and thus is strictly weaker than \(\mathsf{BPI}\) in \(\mathsf{ZFA}\). From the above paper, we also answer two more open questions and strengthen some theorems.

Typical results are:

1. Ellis' theorem is true in the Basic Fraenkel Model, and thus Ellis' theorem does not imply \(\mathsf{BPI}\) in \(\mathsf{ZFA}\).

2. In \(\mathsf{ZF}\) (Zermelo–Fraenkel set theory without the Axiom of Choice (\(\mathsf{AC}\))), if \(S\) is a compact Hausdorff right topological semigroup with \(S\) well orderable, then every left ideal of \(S\) contains a minimal left ideal and a minimal idempotent element. In addition, every such semigroup \(S\) has a maximal idempotent element.

3. In \(\mathsf{ZF}\), if \(S\) is a compact Hausdorff right topological abelian semigroup, then every left ideal of \(S\) contains a minimal left ideal.

4. In \(\mathsf{ZF}\), \(\mathsf{BPI}\) implies ``Every compact Hausdorff right topological abelian semigroup \(S\) has a minimal idempotent element''.

5. In \(\mathsf{ZFA}\), the Axiom of Multiple Choice (\(\mathsf{MC}\)) implies ``Every compact Hausdorff right topological abelian semigroup \(S\) has a minimal idempotent element''.

6. In \(\mathsf{ZFA}\), \(\mathsf{MC}\) implies ``Every compact Hausdorff right topological semigroup \(S\) with \(S\) linearly orderable, has a minimal idempotent element''.

Ellis定理,极小左理想,极小/极大幂等 \(\mathsf{AC}\)
在[18]中,我们证明了布尔素数理想定理(\(\mathsf{BPI}\))足以证明R. Ellis的著名定理:“每个紧Hausdorff右拓扑半群都有一个幂等元”。然而,自然的和有趣的问题的地位的反向含义仍然开放,直到现在。我们在\(\mathsf{ZFA}\) (Zermelo-Fraenkel原子集合理论)的设置中解决了这个开放问题,即我们建立了Ellis定理在\(\mathsf{ZFA}\)中不含\(\mathsf{BPI}\),因此严格弱于\(\mathsf{ZFA}\)中的\(\mathsf{BPI}\)。从上面的文章中,我们还回答了两个开放的问题,并加强了一些定理。典型的结果是:1;Ellis的定理在基本的freenkel模型中是正确的,因此Ellis的定理在\(\mathsf{ZFA}\) .2中并不意味着\(\mathsf{BPI}\)。在\(\mathsf{ZF}\) (Zermelo-Fraenkel集合论,无选择公理(\(\mathsf{AC}\)))中,如果\(S\)是一个紧致Hausdorff右拓扑半群,且\(S\)有序,则\(S\)的每一个左理想包含一个极小左理想和一个极小幂等元。此外,每一个这样的半群\(S\)都有一个极大幂等元。在\(\mathsf{ZF}\)中,如果\(S\)是紧的Hausdorff右拓扑阿贝尔半群,则\(S\)的每一个左理想都包含一个极小左理想。在\(\mathsf{ZF}\)中,\(\mathsf{BPI}\)意味着“每个紧Hausdorff右拓扑阿贝尔半群\(S\)都有一个最小幂等元”。在\(\mathsf{ZFA}\)中,多项选择公理(\(\mathsf{MC}\))表明“每个紧致Hausdorff右拓扑阿贝尔半群\(S\)都有一个最小幂等元”。在\(\mathsf{ZFA}\)中,\(\mathsf{MC}\)意味着“每个紧Hausdorff右拓扑半群\(S\)与\(S\)线性有序,有一个最小幂等元”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信