Transport and Magnetic Properties of Magnéli Phase Tungsten Oxide WO2.90 Prepared by Spark Plasma Sintering

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, APPLIED
T. Dadiani, T. Tchabukiani, D. Jishiashvili, D. Daraselia, D. Japaridze, F. La Mattina, A. Shengelaya
{"title":"Transport and Magnetic Properties of Magnéli Phase Tungsten Oxide WO2.90 Prepared by Spark Plasma Sintering","authors":"T. Dadiani,&nbsp;T. Tchabukiani,&nbsp;D. Jishiashvili,&nbsp;D. Daraselia,&nbsp;D. Japaridze,&nbsp;F. La Mattina,&nbsp;A. Shengelaya","doi":"10.1007/s10948-025-06900-3","DOIUrl":null,"url":null,"abstract":"<div><p>The transport and magnetic properties of the Magnéli phase tungsten oxide WO<sub>2.90</sub>, prepared via spark plasma sintering, were investigated across a broad temperature range of 4–550 K, including the previously unexplored low-temperature region below 300 K. Microstructure analysis shows that obtained pellets are fully dense, enabling reliable measurement of transport properties. Resistivity measurements reveal typical metallic behavior of WO<sub>2.90</sub> at low temperatures. Above room temperature, resistivity tends to saturate by reaching a maximum value near 430 K. The resistivity saturation indicates that Mott-Ioffe-Regel limit is approached, where the charge carrier mean free path becomes comparable to the interatomic spacing. The temperature dependence of the resistivity can be well described by the phenomenological parallel resistor model. Significant positive magnetoresistance was observed at low temperatures, with an unusual linear dependence on the magnetic field. Despite its metallic conductivity, WO<sub>2.90</sub> displays weak diamagnetism, likely due to the substantial core diamagnetism of tungsten and the bipolaronic pairing of charge carriers.\n</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-025-06900-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The transport and magnetic properties of the Magnéli phase tungsten oxide WO2.90, prepared via spark plasma sintering, were investigated across a broad temperature range of 4–550 K, including the previously unexplored low-temperature region below 300 K. Microstructure analysis shows that obtained pellets are fully dense, enabling reliable measurement of transport properties. Resistivity measurements reveal typical metallic behavior of WO2.90 at low temperatures. Above room temperature, resistivity tends to saturate by reaching a maximum value near 430 K. The resistivity saturation indicates that Mott-Ioffe-Regel limit is approached, where the charge carrier mean free path becomes comparable to the interatomic spacing. The temperature dependence of the resistivity can be well described by the phenomenological parallel resistor model. Significant positive magnetoresistance was observed at low temperatures, with an unusual linear dependence on the magnetic field. Despite its metallic conductivity, WO2.90 displays weak diamagnetism, likely due to the substantial core diamagnetism of tungsten and the bipolaronic pairing of charge carriers.

火花等离子烧结制备magnizli相氧化钨WO2.90的输运和磁性能
研究了火花等离子烧结制备的magn相氧化钨WO2.90在4-550 K范围内的输运和磁性能,包括之前未探索的低于300 K的低温区。微观结构分析表明,获得的颗粒是完全致密的,能够可靠地测量输运特性。电阻率测量揭示了WO2.90在低温下的典型金属行为。在室温以上,电阻率趋于饱和,在430 K附近达到最大值。电阻率饱和度表明其接近Mott-Ioffe-Regel极限,载流子平均自由程与原子间间距相当。电阻率的温度依赖性可以用现象并联电阻模型很好地描述。在低温下观察到显著的正磁阻,与磁场呈不寻常的线性依赖关系。尽管具有金属导电性,但WO2.90表现出较弱的抗磁性,这可能是由于钨的大量核心抗磁性和电荷载流子的双极性配对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Superconductivity and Novel Magnetism
Journal of Superconductivity and Novel Magnetism 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.10%
发文量
342
审稿时长
3.5 months
期刊介绍: The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信