Characteristic Polynomials of Sparse Non-Hermitian Random Matrices

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Ievgenii Afanasiev, Tatyana Shcherbina
{"title":"Characteristic Polynomials of Sparse Non-Hermitian Random Matrices","authors":"Ievgenii Afanasiev,&nbsp;Tatyana Shcherbina","doi":"10.1007/s10955-024-03379-5","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the asymptotic local behavior of the second correlation functions of the characteristic polynomials of sparse non-Hermitian random matrices <span>\\(X_n\\)</span> whose entries have the form <span>\\(x_{jk}=d_{jk}w_{jk}\\)</span> with iid complex standard Gaussian <span>\\(w_{jk}\\)</span> and normalised iid Bernoulli(<i>p</i>) <span>\\(d_{jk}\\)</span>. It is shown that, as <span>\\(p\\rightarrow \\infty \\)</span>, the local asymptotic behavior of the second correlation function of characteristic polynomials near <span>\\(z_0\\in \\mathbb {C}\\)</span> coincides with those for Ginibre ensemble: it converges to a determinant with Ginibre kernel in the bulk <span>\\(|z_0|&lt;1\\)</span>, and it is factorized if <span>\\(|z_0|&gt;1\\)</span>. For the finite <span>\\(p&gt;0\\)</span>, the behavior is different and exhibits the transition between different regimes depending on values of <i>p</i> and <span>\\(|z_0|^2\\)</span>.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03379-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the asymptotic local behavior of the second correlation functions of the characteristic polynomials of sparse non-Hermitian random matrices \(X_n\) whose entries have the form \(x_{jk}=d_{jk}w_{jk}\) with iid complex standard Gaussian \(w_{jk}\) and normalised iid Bernoulli(p) \(d_{jk}\). It is shown that, as \(p\rightarrow \infty \), the local asymptotic behavior of the second correlation function of characteristic polynomials near \(z_0\in \mathbb {C}\) coincides with those for Ginibre ensemble: it converges to a determinant with Ginibre kernel in the bulk \(|z_0|<1\), and it is factorized if \(|z_0|>1\). For the finite \(p>0\), the behavior is different and exhibits the transition between different regimes depending on values of p and \(|z_0|^2\).

Abstract Image

稀疏非厄米随机矩阵的特征多项式
我们考虑稀疏非厄米随机矩阵\(X_n\)的特征多项式的第二相关函数的渐近局部行为,该矩阵的项形式为\(x_{jk}=d_{jk}w_{jk}\),具有iid复标准高斯\(w_{jk}\)和归一化iid伯努利(p) \(d_{jk}\)。结果表明,在\(p\rightarrow \infty \)处,特征多项式的第二个相关函数在\(z_0\in \mathbb {C}\)附近的局部渐近行为与Ginibre集合的局部渐近行为是一致的:它收敛于具有Ginibre核的整体行列式\(|z_0|<1\),并在\(|z_0|>1\)处被分解。对于有限的\(p>0\),根据p和\(|z_0|^2\)的值,行为是不同的,并表现出不同状态之间的过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信