{"title":"Searching for heavy neutral leptons coupled to axion-like particles at the LHC far detectors and SHiP","authors":"Zeren Simon Wang, Yu Zhang, Wei Liu","doi":"10.1007/JHEP01(2025)070","DOIUrl":null,"url":null,"abstract":"<p>In hidden-sector models, axion-like particles (ALPs) can couple to heavy neutral leptons (HNLs), leading to rich phenomenologies. We study ALPs produced from <i>D</i>- and <i>B</i>-meson decays via quark-flavor-violating couplings, and decaying exclusively into a pair of HNLs which mix with active neutrinos. The ALP can be either short- or long-lived, depending on the masses of the ALP and the HNL, as well as the corresponding coupling strength. Such GeV-scale HNLs are necessarily long-lived given the current bounds on their mixing parameters. We assess the sensitivities of the LHC far detectors and SHiP, to the long-lived HNLs in such theoretical scenarios. We find that for currently allowed values of the ALP couplings, most of these experiments can probe the active-sterile-neutrino mixing parameters multiple orders of magnitude beyond the present bounds, covering large parameter region targeted with the type-I seesaw mechanism. In addition, our results show that compared to the case of a promptly decaying ALP, assuming an ALP of longer lifetimes weakens the sensitivities of the considered experiments to the long-lived HNLs.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)070.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP01(2025)070","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
In hidden-sector models, axion-like particles (ALPs) can couple to heavy neutral leptons (HNLs), leading to rich phenomenologies. We study ALPs produced from D- and B-meson decays via quark-flavor-violating couplings, and decaying exclusively into a pair of HNLs which mix with active neutrinos. The ALP can be either short- or long-lived, depending on the masses of the ALP and the HNL, as well as the corresponding coupling strength. Such GeV-scale HNLs are necessarily long-lived given the current bounds on their mixing parameters. We assess the sensitivities of the LHC far detectors and SHiP, to the long-lived HNLs in such theoretical scenarios. We find that for currently allowed values of the ALP couplings, most of these experiments can probe the active-sterile-neutrino mixing parameters multiple orders of magnitude beyond the present bounds, covering large parameter region targeted with the type-I seesaw mechanism. In addition, our results show that compared to the case of a promptly decaying ALP, assuming an ALP of longer lifetimes weakens the sensitivities of the considered experiments to the long-lived HNLs.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).