{"title":"System Design and Economic Evaluation of a Liquid Hydrogen Superstation","authors":"Duho Kang, Haneul Mun, Jinwoo Park, Inkyu Lee","doi":"10.1007/s11814-024-00351-7","DOIUrl":null,"url":null,"abstract":"<div><p>Liquid hydrogen (LH<sub>2</sub>)-based hydrogen refueling stations (HRSs) are promising for high-capacity refueling, given the high density of LH<sub>2</sub>, which facilitates large-scale transportation and storage. However, in LH<sub>2</sub> HRSs, the cryogenic cold energy of LH<sub>2</sub> is wasted during the vaporization process required to refuel hydrogen for fuel cell vehicles. To overcome this issue, this study proposes a novel LH<sub>2</sub>-based hydrogen superstation (HSS) that recovers the otherwise wasted cold energy to generate electricity for the station, with any excess electricity used to charge electric vehicles. To explore the most cost-effective configuration for cold energy recovery in the HSS, two power generation cycles were designed: one incorporating a Brayton cycle followed by a Rankine cycle (BC-RC), and another using two Rankine cycles in series (RC-RC). Combining the BC-RC and RC-RC configurations, this two-stage design is adopted to efficiently recover cold energy across a broad temperature range during the vaporization process. The HSS using the BC-RC configuration achieves 53% more cold energy recovery, generates 19% more power, and experiences 8% less exergy waste compared to the HSS with the RC-RC setup. However, in smaller-scale cold energy recovery systems applied to HSS, the cost savings from using pumps instead of compressors outweigh the additional power generation benefits of the Brayton cycle. Consequently, the HSS with the RC-RC configuration demonstrates the highest economic feasibility, with a 2% higher net present value.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"42 2","pages":"233 - 255"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-024-00351-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Liquid hydrogen (LH2)-based hydrogen refueling stations (HRSs) are promising for high-capacity refueling, given the high density of LH2, which facilitates large-scale transportation and storage. However, in LH2 HRSs, the cryogenic cold energy of LH2 is wasted during the vaporization process required to refuel hydrogen for fuel cell vehicles. To overcome this issue, this study proposes a novel LH2-based hydrogen superstation (HSS) that recovers the otherwise wasted cold energy to generate electricity for the station, with any excess electricity used to charge electric vehicles. To explore the most cost-effective configuration for cold energy recovery in the HSS, two power generation cycles were designed: one incorporating a Brayton cycle followed by a Rankine cycle (BC-RC), and another using two Rankine cycles in series (RC-RC). Combining the BC-RC and RC-RC configurations, this two-stage design is adopted to efficiently recover cold energy across a broad temperature range during the vaporization process. The HSS using the BC-RC configuration achieves 53% more cold energy recovery, generates 19% more power, and experiences 8% less exergy waste compared to the HSS with the RC-RC setup. However, in smaller-scale cold energy recovery systems applied to HSS, the cost savings from using pumps instead of compressors outweigh the additional power generation benefits of the Brayton cycle. Consequently, the HSS with the RC-RC configuration demonstrates the highest economic feasibility, with a 2% higher net present value.
期刊介绍:
The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.