{"title":"Efficient Approximation of Varying Fiber Orientation States in Injection Molded Parts Under Consideration of Multiple Manufacturing Uncertainties","authors":"Florian Wittemann, Constantin Krauß, Luise Kärger","doi":"10.1007/s10443-024-10268-3","DOIUrl":null,"url":null,"abstract":"<div><p>The production of high-quality fiber reinforced polymer parts is an important aspect in several industrial areas. However, due to unavoidable uncertainties in material and manufacturing processes, the part quality scatters. One important aspect here is the fiber orientation, being crucial for the thermo-mechanical properties of the part and being influenced by the uncertain material state and process conditions. Process simulations are an important tool for predicting the fiber orientation, but state-of-the-art simulations are normally deterministic and represent only one specific case. Performing enough deterministic simulations to model manufacturing uncertainties requires high numerical effort. Therefore, this work presents methods to quickly and efficiently approximate the fiber orientation under varying material and process parameters, requiring only a few simulations as input. Different schemes for approximation are evaluated and compared with each other and with 3D process simulations.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"32 1","pages":"149 - 172"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10443-024-10268-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-024-10268-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
The production of high-quality fiber reinforced polymer parts is an important aspect in several industrial areas. However, due to unavoidable uncertainties in material and manufacturing processes, the part quality scatters. One important aspect here is the fiber orientation, being crucial for the thermo-mechanical properties of the part and being influenced by the uncertain material state and process conditions. Process simulations are an important tool for predicting the fiber orientation, but state-of-the-art simulations are normally deterministic and represent only one specific case. Performing enough deterministic simulations to model manufacturing uncertainties requires high numerical effort. Therefore, this work presents methods to quickly and efficiently approximate the fiber orientation under varying material and process parameters, requiring only a few simulations as input. Different schemes for approximation are evaluated and compared with each other and with 3D process simulations.
期刊介绍:
Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes.
Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.