Three-dimensional iron–cobalt phosphide nanosheets on nickel oxide nanoparticles for improved glucose oxidation reaction†

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Sundaramoorthy Marimuthu, Harichandana Anoopkumar and Govindhan Maduraiveeran
{"title":"Three-dimensional iron–cobalt phosphide nanosheets on nickel oxide nanoparticles for improved glucose oxidation reaction†","authors":"Sundaramoorthy Marimuthu, Harichandana Anoopkumar and Govindhan Maduraiveeran","doi":"10.1039/D4NJ04220D","DOIUrl":null,"url":null,"abstract":"<p >The development of earth-abundant, highly active, and long-term durable electrocatalysts is crucial for advancing the practical applications of biofuel cells (BFCs). Herein, we demonstrate heterostructured three-dimensional (3D) iron-cobalt phosphide nanosheets on nickel oxide nanoparticles (3D FeCoP NS|NiO NP) for enhanced glucose oxidation reaction (GOR) under an alkaline electrolyte. The 3D FeCoP NS|NiO NP heterostructured electrodes are developed using a chemical etching approach followed by an electrochemical deposition strategy. The 3D FeCoP NS|NiO NP heterostructures deliver a higher catalytic anodic current density (∼10.34 mA cm<small><sup>−2</sup></small>) with a less positive potential (∼0.22 V (<em>vs.</em> Ag/AgCl)), greater mass activity (∼16.0 A g<small><sup>−1</sup></small>), high double layer capacitance (∼0.88 mF cm<small><sup>−2</sup></small>), high electrochemically active surface area (ECSA) (∼22.12 cm<small><sup>−2</sup></small>), highest sensitivity (13.97 mA cm<small><sup>−2</sup></small>) and long-term durability (100 h). The 3D nanosheet-like surface morphology, less agglomerated structure, high ECSA, and synergistic effect of Fe and Co are responsible for the enhanced electrocatalytic GOR activity of the 3D FeCoP NS|NiO NP heterostructures. Addressing the cost-effectiveness of the 3D FeCoP NS|NiO NP heterostructures while maintaining high performance is necessary to make potential biofuel cells. Furthermore, ensuring the long-term stability of the 3D FeCoP NS|NiO NP heterostructures will guarantee reliable and sustained operation in real-world applications.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 4","pages":" 1232-1241"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj04220d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of earth-abundant, highly active, and long-term durable electrocatalysts is crucial for advancing the practical applications of biofuel cells (BFCs). Herein, we demonstrate heterostructured three-dimensional (3D) iron-cobalt phosphide nanosheets on nickel oxide nanoparticles (3D FeCoP NS|NiO NP) for enhanced glucose oxidation reaction (GOR) under an alkaline electrolyte. The 3D FeCoP NS|NiO NP heterostructured electrodes are developed using a chemical etching approach followed by an electrochemical deposition strategy. The 3D FeCoP NS|NiO NP heterostructures deliver a higher catalytic anodic current density (∼10.34 mA cm−2) with a less positive potential (∼0.22 V (vs. Ag/AgCl)), greater mass activity (∼16.0 A g−1), high double layer capacitance (∼0.88 mF cm−2), high electrochemically active surface area (ECSA) (∼22.12 cm−2), highest sensitivity (13.97 mA cm−2) and long-term durability (100 h). The 3D nanosheet-like surface morphology, less agglomerated structure, high ECSA, and synergistic effect of Fe and Co are responsible for the enhanced electrocatalytic GOR activity of the 3D FeCoP NS|NiO NP heterostructures. Addressing the cost-effectiveness of the 3D FeCoP NS|NiO NP heterostructures while maintaining high performance is necessary to make potential biofuel cells. Furthermore, ensuring the long-term stability of the 3D FeCoP NS|NiO NP heterostructures will guarantee reliable and sustained operation in real-world applications.

Abstract Image

三维铁钴磷化物纳米片上的镍氧化物纳米颗粒改善葡萄糖氧化反应†
开发储量丰富、活性高、长效耐用的电催化剂是推进生物燃料电池实际应用的关键。在本研究中,我们在氧化镍纳米颗粒(3D FeCoP NS|NiO NP)上展示了异质结构的三维(3D)磷化铁钴纳米片,用于在碱性电解质下增强葡萄糖氧化反应(GOR)。三维FeCoP NS|NiO NP异质结构电极采用化学蚀刻方法,然后采用电化学沉积策略。3D FeCoP NS|NiO NP异构结构具有更高的催化阳极电流密度(~ 10.34 mA cm−2),更低的正电位(~ 0.22 V(相对于Ag/AgCl)),更高的质量活性(~ 16.0 ag−1),高双层电容(~ 0.88 mF cm−2),高电化学活性表面积(ECSA) (~ 22.12 cm−2),最高的灵敏度(13.97 mA cm−2)和长期耐用性(100小时)。Fe和Co的协同作用是三维FeCoP NS|NiO NP异质结构电催化GOR活性增强的原因。在保持高性能的同时,解决3D FeCoP NS|NiO NP异质结构的成本效益是制造潜在生物燃料电池的必要条件。此外,确保3D FeCoP NS|NiO NP异质结构的长期稳定性将保证在实际应用中可靠和持续的运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信