Thermally stable direct arylation derived terthiophene-isoindigo copolymer for organic solar cell application†

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nika Bekri, Wendimagegn Mammo and Newayemedhin A. Tegegne
{"title":"Thermally stable direct arylation derived terthiophene-isoindigo copolymer for organic solar cell application†","authors":"Nika Bekri, Wendimagegn Mammo and Newayemedhin A. Tegegne","doi":"10.1039/D4NJ03644A","DOIUrl":null,"url":null,"abstract":"<p >The lifetime of organic solar cells (OSCs) remains a significant challenge for their commercial viability. In this study, we successfully synthesized a low band gap copolymer, <strong>P3T-IID</strong>, with an energy gap (<em>E</em><small><sub>g</sub></small>) of 1.61 eV, and HOMO and LUMO levels of −5.43 eV and −3.78 eV, respectively, using direct heteroarylation polycondensation (DAP) copolymerization of a terthiophene donor moiety with an isoindigo acceptor moiety. We investigate the stability of pristine <strong>P3T-IID</strong> copolymer films under conditions of 75% relative humidity, UV light illumination, and an elevated temperature of 85 °C for over 50 h. The results reveal significant absorbance loss due to UV-irradiation-induced processes, such as chain scission and chemical reactions involving free radicals, while the polymer integrity remains largely unaffected by high humidity and elevated temperatures. Interestingly, the copolymer demonstrates excellent thermal stability with a high decomposition temperature of 390 °C. Thermal stability studies on inverted OSCs fabricated with a 1 : 4 ratio of <strong>P3T-IID</strong> : PC<small><sub>70</sub></small>BM show that the devices retained over 40% of their initial power conversion efficiency (PCE) after 24 h of annealing at 85 °C. Further investigation into the degradation mechanism reveals that the PCE loss is primarily due to the deteriorated morphology of the <strong>P3T-IID</strong>:PC<small><sub>70</sub></small>BM active layer and the formation of an unwanted interlayer between the active layer and the electrodes.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 4","pages":" 1356-1366"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj03644a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The lifetime of organic solar cells (OSCs) remains a significant challenge for their commercial viability. In this study, we successfully synthesized a low band gap copolymer, P3T-IID, with an energy gap (Eg) of 1.61 eV, and HOMO and LUMO levels of −5.43 eV and −3.78 eV, respectively, using direct heteroarylation polycondensation (DAP) copolymerization of a terthiophene donor moiety with an isoindigo acceptor moiety. We investigate the stability of pristine P3T-IID copolymer films under conditions of 75% relative humidity, UV light illumination, and an elevated temperature of 85 °C for over 50 h. The results reveal significant absorbance loss due to UV-irradiation-induced processes, such as chain scission and chemical reactions involving free radicals, while the polymer integrity remains largely unaffected by high humidity and elevated temperatures. Interestingly, the copolymer demonstrates excellent thermal stability with a high decomposition temperature of 390 °C. Thermal stability studies on inverted OSCs fabricated with a 1 : 4 ratio of P3T-IID : PC70BM show that the devices retained over 40% of their initial power conversion efficiency (PCE) after 24 h of annealing at 85 °C. Further investigation into the degradation mechanism reveals that the PCE loss is primarily due to the deteriorated morphology of the P3T-IID:PC70BM active layer and the formation of an unwanted interlayer between the active layer and the electrodes.

Abstract Image

热稳定的直接芳基化衍生的噻吩-异靛蓝共聚物在有机太阳能电池中的应用
有机太阳能电池(OSCs)的寿命仍然是其商业可行性的重大挑战。在这项研究中,我们成功地合成了一种低带隙共聚物P3T-IID,其能隙(Eg)为1.61 eV, HOMO和LUMO能级分别为- 5.43 eV和- 3.78 eV,采用直接杂芳基化缩聚(DAP)方法将噻吩给体片段与等靛蓝受体片段共聚。我们研究了原始P3T-IID共聚物薄膜在75%相对湿度、紫外线照射和85°C高温下超过50小时的稳定性。结果表明,由于紫外线照射诱导的过程(如链断裂和涉及自由基的化学反应),聚合物的吸光度损失显著,而聚合物的完整性在很大程度上不受高湿和高温的影响。有趣的是,该共聚物具有优异的热稳定性,分解温度高达390°C。以1:4的P3T-IID: PC70BM制备的倒立OSCs的热稳定性研究表明,在85℃下退火24 h后,器件保持了超过40%的初始功率转换效率(PCE)。对降解机制的进一步研究表明,PCE损耗主要是由于P3T-IID:PC70BM活性层的形貌恶化以及活性层和电极之间形成了不必要的中间层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信