2D V2C MXene/2D g-C3N4 nanosheet heterojunctions constructed via a one-pot method for remedying water pollution through high-efficient adsorption together with in situ photocatalytic degradation†

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-01-20 DOI:10.1039/D4RA07222G
Shishan Xue, Dengliang He, Herong Zhang, Yuning Zhang, Yu Wang, Yurong Zeng, Shuxin Liu and Ning Chen
{"title":"2D V2C MXene/2D g-C3N4 nanosheet heterojunctions constructed via a one-pot method for remedying water pollution through high-efficient adsorption together with in situ photocatalytic degradation†","authors":"Shishan Xue, Dengliang He, Herong Zhang, Yuning Zhang, Yu Wang, Yurong Zeng, Shuxin Liu and Ning Chen","doi":"10.1039/D4RA07222G","DOIUrl":null,"url":null,"abstract":"<p >With the development of modern industry, the problems of water pollution have become increasingly serious. There is a strong need to develop highly efficient and environmentally friendly technologies to address water pollution. In this work, a novel 2D V<small><sub>2</sub></small>C MXene/2D g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> nanosheet heterojunction was constructed <em>via</em> a one-pot method. The obtained composite materials displayed excellent purifying capacity for dye pollutants, with removal ratios for crystal violet (CV), Rhodamine B (RhB) and methylene blue (MB) of 99.5%, 99.5%, and 95% within 80 min (including an adsorption process for 50 min and photodegradation process for 27 min), respectively. The extraordinary purifying capacity was accomplished through high-efficient adsorption together with <em>in situ</em> photocatalytic degradation within the unique 2D/2D heterojunction structure. The successful exploitation of 2D V<small><sub>2</sub></small>C MXene/2D g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> nanosheet heterojunctions provided a simple method to efficiently remedy water pollution.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 3","pages":" 1792-1804"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra07222g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra07222g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of modern industry, the problems of water pollution have become increasingly serious. There is a strong need to develop highly efficient and environmentally friendly technologies to address water pollution. In this work, a novel 2D V2C MXene/2D g-C3N4 nanosheet heterojunction was constructed via a one-pot method. The obtained composite materials displayed excellent purifying capacity for dye pollutants, with removal ratios for crystal violet (CV), Rhodamine B (RhB) and methylene blue (MB) of 99.5%, 99.5%, and 95% within 80 min (including an adsorption process for 50 min and photodegradation process for 27 min), respectively. The extraordinary purifying capacity was accomplished through high-efficient adsorption together with in situ photocatalytic degradation within the unique 2D/2D heterojunction structure. The successful exploitation of 2D V2C MXene/2D g-C3N4 nanosheet heterojunctions provided a simple method to efficiently remedy water pollution.

Abstract Image

用一锅法构建二维V2C MXene/二维g-C3N4纳米片异质结,通过高效吸附和原位光催化降解修复水污染
随着现代工业的发展,水污染问题日益严重。迫切需要发展高效和环境友好的技术来解决水污染问题。在这项工作中,通过一锅法构建了一种新的2D V2C MXene/2D g-C3N4纳米片异质结。所制备的复合材料对染料污染物表现出优异的净化能力,在80 min(包括吸附50 min和光降解27 min)内,对结晶紫(CV)、罗丹明B (RhB)和亚甲基蓝(MB)的去除率分别达到99.5%、99.5%和95%。在独特的2D/2D异质结结构中,通过高效吸附和原位光催化降解实现了非凡的净化能力。二维V2C MXene/二维g-C3N4纳米片异质结的成功开发为有效修复水污染提供了一种简单的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信