Unveiling the origins of the activity gap between rotating disk electrodes and membrane electrode assemblies: Pt seed-mediated iridium-doped octahedral platinum nickel catalysts for proton exchange membrane fuel cells†

EES catalysis Pub Date : 2024-11-20 DOI:10.1039/D4EY00172A
Lujin Pan, Jiasheng Lu, Olivia Dunseath, Michal Ronovský, An Guo, Malte Klingenhof, Xingli Wang, Elisabeth Hornberger, Alex Martinez Bonastre, Harriet Burdett, Jonathan Sharman, Fabio Dionigi and Peter Strasser
{"title":"Unveiling the origins of the activity gap between rotating disk electrodes and membrane electrode assemblies: Pt seed-mediated iridium-doped octahedral platinum nickel catalysts for proton exchange membrane fuel cells†","authors":"Lujin Pan, Jiasheng Lu, Olivia Dunseath, Michal Ronovský, An Guo, Malte Klingenhof, Xingli Wang, Elisabeth Hornberger, Alex Martinez Bonastre, Harriet Burdett, Jonathan Sharman, Fabio Dionigi and Peter Strasser","doi":"10.1039/D4EY00172A","DOIUrl":null,"url":null,"abstract":"<p >Proton exchange membrane fuel cells (PEMFCs) offer energy solutions of high efficiency and low environmental impact. However, the sluggish kinetics of the oxygen reduction reaction (ORR) at the cathode limit their commercialization. Pt-based electrocatalysts, particularly octahedral (oh)PtNi bimetallic catalysts doped with additional transition metals, stand out as promising candidates for enhancing ORR rates and overall cell performance. A key challenge in the development and validation of active oh PtNi electrocatalysts is the unsuccessful translation of laboratory-scale catalyst test results, typically assessed using the rotating disk electrode (RDE) method, to practical applications in membrane electrode assembly (MEA) for PEMFCs. Here, we consider a new family of Ir-doped octahedral ORR fuel cell catalysts with very high RDE-based Pt mass activities. First, we designed the catalysts and tuned the catalyst layer properties to achieve the new state-of-the-art performance for oh-PtNi catalysts in PEMFCs. Still, a significant decrease in relative performance with respect to Pt/C when transitioning from RDE into an MEA-based cathode environment was observed. Thus, to better understand this performance loss, we investigated the effects of ionomer–catalyst interactions by adjusting the I/C ratio, the effect of temperature by applying RDE under high temperature, and the effects of acidity and high current density by applying and introducing the floating electrode technique (FET) to shaped nanoalloys. A severe detrimental effect was observed for high I/C ratios, with a behaviour contrasting reference commercial catalysts, while the negative effect of high temperatures was enhanced at low I/C. Based on this analysis, our study not only demonstrates a catalyst with enhanced ORR activity and specifically higher electrochemical surface area (ECSA) among oh-PtNi catalysts, but also provides valuable insights into overcoming MEA implementation challenges for these advanced fuel cell catalysts.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 128-139"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00172a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d4ey00172a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Proton exchange membrane fuel cells (PEMFCs) offer energy solutions of high efficiency and low environmental impact. However, the sluggish kinetics of the oxygen reduction reaction (ORR) at the cathode limit their commercialization. Pt-based electrocatalysts, particularly octahedral (oh)PtNi bimetallic catalysts doped with additional transition metals, stand out as promising candidates for enhancing ORR rates and overall cell performance. A key challenge in the development and validation of active oh PtNi electrocatalysts is the unsuccessful translation of laboratory-scale catalyst test results, typically assessed using the rotating disk electrode (RDE) method, to practical applications in membrane electrode assembly (MEA) for PEMFCs. Here, we consider a new family of Ir-doped octahedral ORR fuel cell catalysts with very high RDE-based Pt mass activities. First, we designed the catalysts and tuned the catalyst layer properties to achieve the new state-of-the-art performance for oh-PtNi catalysts in PEMFCs. Still, a significant decrease in relative performance with respect to Pt/C when transitioning from RDE into an MEA-based cathode environment was observed. Thus, to better understand this performance loss, we investigated the effects of ionomer–catalyst interactions by adjusting the I/C ratio, the effect of temperature by applying RDE under high temperature, and the effects of acidity and high current density by applying and introducing the floating electrode technique (FET) to shaped nanoalloys. A severe detrimental effect was observed for high I/C ratios, with a behaviour contrasting reference commercial catalysts, while the negative effect of high temperatures was enhanced at low I/C. Based on this analysis, our study not only demonstrates a catalyst with enhanced ORR activity and specifically higher electrochemical surface area (ECSA) among oh-PtNi catalysts, but also provides valuable insights into overcoming MEA implementation challenges for these advanced fuel cell catalysts.

Abstract Image

揭示旋转圆盘电极和膜电极组件之间活性差距的起源:质子交换膜燃料电池中铂种子介导的掺铱八面体铂镍催化剂
质子交换膜燃料电池(pemfc)提供了高效、低环境影响的能源解决方案。然而,阴极氧还原反应(ORR)的缓慢动力学限制了它们的商业化。基于pt的电催化剂,特别是掺杂额外过渡金属的八面体(oh)PtNi双金属催化剂,是提高ORR率和整体电池性能的有希望的候选者。开发和验证活性oh PtNi电催化剂的一个关键挑战是,实验室规模的催化剂测试结果(通常使用旋转圆盘电极(RDE)方法进行评估)无法成功转化为用于pemfc的膜电极组装(MEA)的实际应用。在这里,我们考虑了一个新的家族ir掺杂八面体ORR燃料电池催化剂具有非常高的rde基Pt质量活性。首先,我们设计了催化剂,并调整了催化剂层的性质,以实现pemfc中oh-PtNi催化剂的最新性能。然而,当从RDE过渡到基于mea的阴极环境时,观察到相对于Pt/C的相对性能显着下降。因此,为了更好地理解这种性能损失,我们通过调整I/C比来研究离子-催化剂相互作用的影响,通过在高温下施加RDE来研究温度的影响,以及通过在成形纳米合金中应用和引入浮动电极技术(FET)来研究酸度和高电流密度的影响。在高I/C条件下,观察到严重的不利影响,与参考商业催化剂的行为形成对比,而在低I/C条件下,高温的负面影响增强。基于这一分析,我们的研究不仅展示了oh-PtNi催化剂中具有增强的ORR活性和更高的电化学表面积(ECSA)的催化剂,而且为克服这些先进燃料电池催化剂的MEA实施挑战提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信