Progress in in situ characterization of electrocatalysis

EES catalysis Pub Date : 2024-10-14 DOI:10.1039/D4EY00168K
Wei Shen, Yizhen Ye, Qiujin Xia and Pinxian Xi
{"title":"Progress in in situ characterization of electrocatalysis","authors":"Wei Shen, Yizhen Ye, Qiujin Xia and Pinxian Xi","doi":"10.1039/D4EY00168K","DOIUrl":null,"url":null,"abstract":"<p >With the continuous development and extensive research of electrocatalytic technology, the unclear dynamic catalytic reaction process limits the in-depth study of reaction regulation mechanisms and the targeted design of excellent catalysts. The comprehension of electrochemical reactions through conventional <em>ex situ</em> characterization techniques poses a formidable challenge. Fortunately, <em>in situ</em> characterization technology makes it possible to further clarify the mechanism of electrocatalytic reactions. Here, we will select some highlight studies of <em>in situ</em> characterization techniques during electrochemical reactions to introduce features and difficulties in practical experiments and give some advice and evaluate future development trends for relevant fields. This article will show the advantages as well as challenges in the <em>in situ</em> technology in electrocatalytic reactions, and indicate the development directions.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 10-31"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00168k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d4ey00168k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the continuous development and extensive research of electrocatalytic technology, the unclear dynamic catalytic reaction process limits the in-depth study of reaction regulation mechanisms and the targeted design of excellent catalysts. The comprehension of electrochemical reactions through conventional ex situ characterization techniques poses a formidable challenge. Fortunately, in situ characterization technology makes it possible to further clarify the mechanism of electrocatalytic reactions. Here, we will select some highlight studies of in situ characterization techniques during electrochemical reactions to introduce features and difficulties in practical experiments and give some advice and evaluate future development trends for relevant fields. This article will show the advantages as well as challenges in the in situ technology in electrocatalytic reactions, and indicate the development directions.

Abstract Image

电催化原位表征的研究进展
随着电催化技术的不断发展和广泛研究,不明确的催化反应动态过程限制了对反应调控机理的深入研究和对优良催化剂的针对性设计。通过传统的非原位表征技术来理解电化学反应是一个巨大的挑战。幸运的是,原位表征技术使得进一步阐明电催化反应的机理成为可能。本文将选取电化学反应现场表征技术的一些重点研究,介绍其特点和实际实验中的难点,并对相关领域的未来发展趋势提出建议和评价。本文将介绍电催化原位技术的优点和面临的挑战,并指出其发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信