Chenxi Zhang, Hongqing Zhao, Peng Zhan, Houchao Shan, Yanou Qi, Wenqiang Ren, Xiangshi Liu, Peiyong Qin, Di Cai and Tianwei Tan
{"title":"Photo-enzyme-coupled catalysis for selective oxidation of 2,5-diformylfuran into 2,5-furandicarboxylic acid†","authors":"Chenxi Zhang, Hongqing Zhao, Peng Zhan, Houchao Shan, Yanou Qi, Wenqiang Ren, Xiangshi Liu, Peiyong Qin, Di Cai and Tianwei Tan","doi":"10.1039/D4GC05475J","DOIUrl":null,"url":null,"abstract":"<p >The transformation of 2,5-diformylfuran (DFF) into renewable biomass-derived 2,5-furandicarboxylic acid (FDCA) is an attractive reaction. In this study, a novel photo-enzymatic catalysis system was established for selective oxidation of DFF into FDCA under mild conditions and through a one-pot process, in which 2-ethylanthraquinone served as the homogeneous photocatalyst for <em>in situ</em> H<small><sub>2</sub></small>O<small><sub>2</sub></small> production under visible light irradiation, while H<small><sub>2</sub></small>O<small><sub>2</sub></small> served as the oxidant for the organic peracid-assisted oxidation of DFF into FDCA by commercial lipase (Lipozyme 435). Results indicated that the constitution of the buffering system evidently influenced both photocatalyst and lipase activities in the coupling system, which further affected the kinetics of the tandem reactions and FDCA yield. Under optimized conditions (2 mg mL<small><sup>−1</sup></small> of 2-ethylanthraquinone, 3 mg mL<small><sup>−1</sup></small> of lipase, 7 W and <em>λ</em> > 420 nm of the light source, and <em>tert</em>-butanol/ethanol ratio of 9 : 1 (v : v)), 84.14% ± 4.68% of FDCA yield with complete DFF conversion was realized. Mechanism investigation using molecular docking simulation indicated that H<small><sub>2</sub></small>O<small><sub>2</sub></small> produced from the light reaction was consumed by lipase to generate peracetic acid from ethyl acetate that drove the selective oxidation of aldehyde groups in the DFF molecule. The novel visible-light-driven photo-enzyme coupling system successfully addressed the challenges associated with manually adding, storing, and transporting H<small><sub>2</sub></small>O<small><sub>2</sub></small> in conventional DFF oxidation, thus showing promise in valorization of a broader range of aldehyde group-containing biomass-derived molecules into renewable chemicals.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 4","pages":" 1206-1213"},"PeriodicalIF":9.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d4gc05475j","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The transformation of 2,5-diformylfuran (DFF) into renewable biomass-derived 2,5-furandicarboxylic acid (FDCA) is an attractive reaction. In this study, a novel photo-enzymatic catalysis system was established for selective oxidation of DFF into FDCA under mild conditions and through a one-pot process, in which 2-ethylanthraquinone served as the homogeneous photocatalyst for in situ H2O2 production under visible light irradiation, while H2O2 served as the oxidant for the organic peracid-assisted oxidation of DFF into FDCA by commercial lipase (Lipozyme 435). Results indicated that the constitution of the buffering system evidently influenced both photocatalyst and lipase activities in the coupling system, which further affected the kinetics of the tandem reactions and FDCA yield. Under optimized conditions (2 mg mL−1 of 2-ethylanthraquinone, 3 mg mL−1 of lipase, 7 W and λ > 420 nm of the light source, and tert-butanol/ethanol ratio of 9 : 1 (v : v)), 84.14% ± 4.68% of FDCA yield with complete DFF conversion was realized. Mechanism investigation using molecular docking simulation indicated that H2O2 produced from the light reaction was consumed by lipase to generate peracetic acid from ethyl acetate that drove the selective oxidation of aldehyde groups in the DFF molecule. The novel visible-light-driven photo-enzyme coupling system successfully addressed the challenges associated with manually adding, storing, and transporting H2O2 in conventional DFF oxidation, thus showing promise in valorization of a broader range of aldehyde group-containing biomass-derived molecules into renewable chemicals.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.