Resource Scheduling in MU-MIMO and NOMA Enabled Integrated Access and Backhaul Networks

IF 6.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Chuan-Wei Cho;Meng-Shiuan Pan
{"title":"Resource Scheduling in MU-MIMO and NOMA Enabled Integrated Access and Backhaul Networks","authors":"Chuan-Wei Cho;Meng-Shiuan Pan","doi":"10.1109/OJCOMS.2025.3525506","DOIUrl":null,"url":null,"abstract":"The integrated access and backhaul (IAB) architecture utilizes wireless backhaul to facilitate the expansion of fifth-generation (5G) New Radio (NR) networks. In an IAB network, intermediate base stations (or say IAB nodes) can be connected in a multi-hop fashion. However, optimizing resource scheduling in such a network remains a critical challenge. In this work, we present a novel method that integrates multi-user multiple-input and multiple-output (MU-MIMO) and non-orthogonal multiple access (NOMA) technologies into IAB networks. The designed two-phase algorithm has the following features: 1) support for multi-path routing and efficient resource utilization through the combined use of MU-MIMO and NOMA, 2) a novel route decision phase that selects optimal paths by considering load balancing among IAB nodes, and 3) a dynamic link scheduling phase that allocates transmission power and schedules links to maximize network capacity. Simulation results demonstrate that the proposed solution achieves significant improvements in throughput, fairness, and latency compared to existing methods.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"551-559"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10820963","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10820963/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The integrated access and backhaul (IAB) architecture utilizes wireless backhaul to facilitate the expansion of fifth-generation (5G) New Radio (NR) networks. In an IAB network, intermediate base stations (or say IAB nodes) can be connected in a multi-hop fashion. However, optimizing resource scheduling in such a network remains a critical challenge. In this work, we present a novel method that integrates multi-user multiple-input and multiple-output (MU-MIMO) and non-orthogonal multiple access (NOMA) technologies into IAB networks. The designed two-phase algorithm has the following features: 1) support for multi-path routing and efficient resource utilization through the combined use of MU-MIMO and NOMA, 2) a novel route decision phase that selects optimal paths by considering load balancing among IAB nodes, and 3) a dynamic link scheduling phase that allocates transmission power and schedules links to maximize network capacity. Simulation results demonstrate that the proposed solution achieves significant improvements in throughput, fairness, and latency compared to existing methods.
基于MU-MIMO和NOMA的综合接入和回程网络中的资源调度
综合接入和回程(IAB)架构利用无线回程来促进第五代(5G)新无线电(NR)网络的扩展。在IAB网络中,中间基站(或者说是IAB节点)可以以多跳方式连接。然而,在这样的网络中,优化资源调度仍然是一个关键的挑战。在这项工作中,我们提出了一种将多用户多输入多输出(MU-MIMO)和非正交多址(NOMA)技术集成到IAB网络中的新方法。设计的两阶段算法具有以下特点:1)通过组合使用MU-MIMO和NOMA,支持多路径路由和高效的资源利用;2)新颖的路由决策阶段,考虑IAB节点之间的负载均衡,选择最优路径;3)动态链路调度阶段,分配传输功率和调度链路,使网络容量最大化。仿真结果表明,与现有方法相比,该方案在吞吐量、公平性和延迟方面都有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.70
自引率
3.80%
发文量
94
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023. The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include: Systems and network architecture, control and management Protocols, software, and middleware Quality of service, reliability, and security Modulation, detection, coding, and signaling Switching and routing Mobile and portable communications Terminals and other end-user devices Networks for content distribution and distributed computing Communications-based distributed resources control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信