Characterization and Analysis of the 3D Gaussian Splatting Rendering Pipeline

IF 1.4 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jiwon Lee;Yunjae Lee;Youngeun Kwon;Minsoo Rhu
{"title":"Characterization and Analysis of the 3D Gaussian Splatting Rendering Pipeline","authors":"Jiwon Lee;Yunjae Lee;Youngeun Kwon;Minsoo Rhu","doi":"10.1109/LCA.2024.3504579","DOIUrl":null,"url":null,"abstract":"Novel view synthesis, a task generating a 2D image frame from a specific viewpoint within a 3D object or scene, plays a crucial role in 3D rendering. Neural Radiance Field (NeRF) emerged as a prominent method for implementing novel view synthesis, but 3D Gaussian Splatting (3DGS) recently began to emerge as a viable alternative. Despite the tremendous interest from both academia and industry, there has been a lack of research to identify the computational bottlenecks of 3DGS, which is critical for its deployment in real-world products. In this work, we present a comprehensive end-to-end characterization of the 3DGS rendering pipeline, identifying the alpha blending stage within the tile-based rasterizer as causing a significant performance bottleneck. Based on our findings, we discuss several future research directions aiming to inspire continued exploration within this burgeoning application domain.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 1","pages":"13-16"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10763438/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Novel view synthesis, a task generating a 2D image frame from a specific viewpoint within a 3D object or scene, plays a crucial role in 3D rendering. Neural Radiance Field (NeRF) emerged as a prominent method for implementing novel view synthesis, but 3D Gaussian Splatting (3DGS) recently began to emerge as a viable alternative. Despite the tremendous interest from both academia and industry, there has been a lack of research to identify the computational bottlenecks of 3DGS, which is critical for its deployment in real-world products. In this work, we present a comprehensive end-to-end characterization of the 3DGS rendering pipeline, identifying the alpha blending stage within the tile-based rasterizer as causing a significant performance bottleneck. Based on our findings, we discuss several future research directions aiming to inspire continued exploration within this burgeoning application domain.
三维高斯飞溅渲染管道的表征与分析
新颖视图合成是一种从3D对象或场景中的特定视点生成2D图像帧的任务,在3D渲染中起着至关重要的作用。神经辐射场(NeRF)是实现新视图合成的重要方法,但3D高斯飞溅(3DGS)最近开始成为一种可行的替代方法。尽管学术界和工业界对此都非常感兴趣,但目前还缺乏研究来确定3DGS的计算瓶颈,而这对于其在实际产品中的部署至关重要。在这项工作中,我们提出了3DGS渲染管道的全面端到端表征,确定了基于tile的光栅化器中的alpha混合阶段,这导致了显著的性能瓶颈。基于我们的发现,我们讨论了几个未来的研究方向,旨在激发在这个新兴应用领域的持续探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Computer Architecture Letters
IEEE Computer Architecture Letters COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.60
自引率
4.30%
发文量
29
期刊介绍: IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信