Unsupervised Contrastive Learning-Based Single Domain Generalization Method for Intelligent Bearing Fault Diagnosis

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Qiang Wu;Yue Ma;Zhixi Feng;Shuyuan Yang;Hao Hu
{"title":"Unsupervised Contrastive Learning-Based Single Domain Generalization Method for Intelligent Bearing Fault Diagnosis","authors":"Qiang Wu;Yue Ma;Zhixi Feng;Shuyuan Yang;Hao Hu","doi":"10.1109/JSEN.2024.3507817","DOIUrl":null,"url":null,"abstract":"In the field of fault diagnosis (FD), an increasing number of domain generalization (DG) methods are being employed to address domain shift issues. The vast majority of these methods focus on learning domain-invariant features from multiple source domains, with very few considering the more realistic scenario of a single-source domain. Furthermore, there is a lack of work that achieves single-DG (SDG) through unsupervised means. Therefore, in this article, we introduce a data augmentation method for frequency-domain signals called multi-amplitude random spectrum (MARS), which randomly adjusts the amplitude of each point in the spectrum to generate multiple pseudo-target domain samples from a single source domain sample. Then, we combine MARS with unsupervised contrastive learning to bring the pseudo target domain samples closer to the source domain samples in the feature space, which enables generalization to unknown target domains since the pseudo target domain samples contain potentially true target domain samples as much as possible. Unsupervised SDG intelligent FD can thus be achieved. Extensive experiments on three datasets demonstrate effectiveness of the proposed method. The code is available at <uri>https://github.com/WuQiangXDU/UCL-SDG</uri>.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 2","pages":"3923-3934"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10785570/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of fault diagnosis (FD), an increasing number of domain generalization (DG) methods are being employed to address domain shift issues. The vast majority of these methods focus on learning domain-invariant features from multiple source domains, with very few considering the more realistic scenario of a single-source domain. Furthermore, there is a lack of work that achieves single-DG (SDG) through unsupervised means. Therefore, in this article, we introduce a data augmentation method for frequency-domain signals called multi-amplitude random spectrum (MARS), which randomly adjusts the amplitude of each point in the spectrum to generate multiple pseudo-target domain samples from a single source domain sample. Then, we combine MARS with unsupervised contrastive learning to bring the pseudo target domain samples closer to the source domain samples in the feature space, which enables generalization to unknown target domains since the pseudo target domain samples contain potentially true target domain samples as much as possible. Unsupervised SDG intelligent FD can thus be achieved. Extensive experiments on three datasets demonstrate effectiveness of the proposed method. The code is available at https://github.com/WuQiangXDU/UCL-SDG.
基于无监督对比学习的轴承故障智能诊断单域泛化方法
在故障诊断领域,越来越多的领域泛化(DG)方法被用于解决领域转移问题。这些方法中的绝大多数都侧重于从多个源域学习域不变特征,很少考虑到单源域的更现实的场景。此外,缺乏通过无监督手段实现单一目标(SDG)的工作。因此,在本文中,我们引入了一种频域信号的数据增强方法,称为多幅随机频谱(MARS),该方法随机调整频谱中每个点的幅值,从单个源域样本生成多个伪目标域样本。然后,我们将MARS与无监督对比学习相结合,使伪目标域样本在特征空间中更接近源域样本,从而实现对未知目标域的泛化,因为伪目标域样本尽可能多地包含潜在的真实目标域样本。因此可以实现无监督SDG智能FD。在三个数据集上的大量实验证明了该方法的有效性。代码可在https://github.com/WuQiangXDU/UCL-SDG上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信