{"title":"A Feature-Domain Channel Acquisition Scheme for MIMO-OFDM","authors":"Shuai Gao;Fan Xu;Qingjiang Shi","doi":"10.1109/JSTSP.2024.3454948","DOIUrl":null,"url":null,"abstract":"This paper studies the channel acquisition problem in multi-input-multi-output orthogonal frequency division multiplexing networks based on channel statistical information, aiming at mitigating the interference caused by users sharing the same resource blocks and the same pilot signal in massive access. A novel feature domain is established for wireless channels by approximating the channel into a linear combination of statistical subchannels, so as to reduce the number of parameters to be estimated as well as enhance the accuracy of channel acquisition. In order to estimate the multipliers of subchannels in the linear combination, a zero-forcing-based and a minimum-mean-square-error-based iterative algorithms are proposed to optimize the transceiver matrices for feature-domain channel acquisition. Simulation results show that the proposed schemes achieve a more accurate acquisition of the channels than the existing channel acquisition methods when a considerable number of users share the same resource blocks, demonstrating the effectiveness of the proposed feature-domain channel acquisition methods for massive access.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"18 7","pages":"1351-1365"},"PeriodicalIF":8.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10670015/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the channel acquisition problem in multi-input-multi-output orthogonal frequency division multiplexing networks based on channel statistical information, aiming at mitigating the interference caused by users sharing the same resource blocks and the same pilot signal in massive access. A novel feature domain is established for wireless channels by approximating the channel into a linear combination of statistical subchannels, so as to reduce the number of parameters to be estimated as well as enhance the accuracy of channel acquisition. In order to estimate the multipliers of subchannels in the linear combination, a zero-forcing-based and a minimum-mean-square-error-based iterative algorithms are proposed to optimize the transceiver matrices for feature-domain channel acquisition. Simulation results show that the proposed schemes achieve a more accurate acquisition of the channels than the existing channel acquisition methods when a considerable number of users share the same resource blocks, demonstrating the effectiveness of the proposed feature-domain channel acquisition methods for massive access.
期刊介绍:
The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others.
The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.