{"title":"A Unified Activity Detection Framework for Massive Access: Beyond the Block-Fading Paradigm","authors":"Jianan Bai;Erik G. Larsson","doi":"10.1109/JSTSP.2024.3486200","DOIUrl":null,"url":null,"abstract":"The wireless channel changes continuously with time and frequency and the block-fading assumption, which is popular in many theoretical analyses, never holds true in practical scenarios. This discrepancy is critical for user activity detection in grant-free random access, where joint processing across multiple coherence blocks is undesirable, especially when the environment becomes more dynamic. In this paper, we develop a framework for low-dimensional approximation of the channel to capture its variations over time and frequency, and use this framework to implement robust activity detection algorithms. Furthermore, we investigate how to efficiently estimate the principal subspace that defines the low-dimensional approximation. We also examine pilot hopping as a way of exploiting time and frequency diversity in scenarios with limited channel coherence, and extend our algorithms to this case. Through numerical examples, we demonstrate a substantial performance improvement achieved by our proposed framework.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"18 7","pages":"1366-1380"},"PeriodicalIF":8.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10734156/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The wireless channel changes continuously with time and frequency and the block-fading assumption, which is popular in many theoretical analyses, never holds true in practical scenarios. This discrepancy is critical for user activity detection in grant-free random access, where joint processing across multiple coherence blocks is undesirable, especially when the environment becomes more dynamic. In this paper, we develop a framework for low-dimensional approximation of the channel to capture its variations over time and frequency, and use this framework to implement robust activity detection algorithms. Furthermore, we investigate how to efficiently estimate the principal subspace that defines the low-dimensional approximation. We also examine pilot hopping as a way of exploiting time and frequency diversity in scenarios with limited channel coherence, and extend our algorithms to this case. Through numerical examples, we demonstrate a substantial performance improvement achieved by our proposed framework.
期刊介绍:
The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others.
The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.