A Planar Millimeter-Wave Diffuse-Reflection Suppression 4-D Imaging Radar Using L-Shaped Switchable Linearly Phased Array

Huimin Liu;Jiawang Li;Zhang-Cheng Hao;Yun Hu;Gang Xu;Wei Hong
{"title":"A Planar Millimeter-Wave Diffuse-Reflection Suppression 4-D Imaging Radar Using L-Shaped Switchable Linearly Phased Array","authors":"Huimin Liu;Jiawang Li;Zhang-Cheng Hao;Yun Hu;Gang Xu;Wei Hong","doi":"10.1109/TRS.2024.3523589","DOIUrl":null,"url":null,"abstract":"This article proposes a scatter suppression L-shaped phased-array imaging radar. The system operates at 24–26.4 GHz and is capable of 4-D imaging to determine the distance, elevation, azimuth, and speed of targets. It utilizes a frequency-modulated continuous-wave (FMCW) signal with a bandwidth of 2.4 GHz to extract range information, resulting in a range resolution of 62.5 mm. Orthogonal L-shaped linearly phased arrays are used for both transmission and reception. The azimuth and elevation angle information are obtained by switching the radiation beams of the phased arrays. The radar exhibits good scanning capabilities in 2-D space, with a scanning field of view (FOV) over 100° and an angular resolution of 3°. Importantly, the imaging artifacts due to multiple diffuse reflections can be suppressed by switching the transmit and receive phased-array antennas. A prototype is manufactured using the printed circuit board technology, which has a compact size of <inline-formula> <tex-math>$23.5\\times 23.5$ </tex-math></inline-formula> cm2. Experimental validation of the design has been conducted. The proposed radar architecture and array layout reduce the complexity of the baseband, offering advantages such as easy implementation, high integration, and low cost, showing promising prospects for potential sensing applications.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"155-168"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10817637/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes a scatter suppression L-shaped phased-array imaging radar. The system operates at 24–26.4 GHz and is capable of 4-D imaging to determine the distance, elevation, azimuth, and speed of targets. It utilizes a frequency-modulated continuous-wave (FMCW) signal with a bandwidth of 2.4 GHz to extract range information, resulting in a range resolution of 62.5 mm. Orthogonal L-shaped linearly phased arrays are used for both transmission and reception. The azimuth and elevation angle information are obtained by switching the radiation beams of the phased arrays. The radar exhibits good scanning capabilities in 2-D space, with a scanning field of view (FOV) over 100° and an angular resolution of 3°. Importantly, the imaging artifacts due to multiple diffuse reflections can be suppressed by switching the transmit and receive phased-array antennas. A prototype is manufactured using the printed circuit board technology, which has a compact size of $23.5\times 23.5$ cm2. Experimental validation of the design has been conducted. The proposed radar architecture and array layout reduce the complexity of the baseband, offering advantages such as easy implementation, high integration, and low cost, showing promising prospects for potential sensing applications.
基于l型可切换线性相控阵的平面毫米波漫反射抑制四维成像雷达
提出了一种散射抑制型l型相控阵成像雷达。该系统工作频率为24-26.4 GHz,能够进行4-D成像,以确定目标的距离、仰角、方位和速度。它利用带宽为2.4 GHz的调频连续波(FMCW)信号提取距离信息,从而获得62.5 mm的距离分辨率。发射和接收均采用正交l型线性相控阵。通过切换相控阵的辐射波束来获得方位角和仰角信息。该雷达在二维空间具有良好的扫描能力,扫描视场(FOV)超过100°,角分辨率为3°。重要的是,由于多次漫反射的成像伪影可以通过切换发射和接收相控阵天线来抑制。使用印刷电路板技术制造的原型尺寸为23.5美元× 23.5美元平方厘米。对设计进行了实验验证。所提出的雷达架构和阵列布局降低了基带的复杂性,具有易于实现、高集成度和低成本等优点,具有潜在的传感应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信