{"title":"A Deep Reinforcement Learning Method for Collision Avoidance with Dense Speed-Constrained Multi-UAV","authors":"Jiale Han;Yi Zhu;Jian Yang","doi":"10.1109/LRA.2025.3527292","DOIUrl":null,"url":null,"abstract":"This letter introduces a novel deep reinforcement learning (DRL) method for collision avoidance problem of fixed-wing unmanned aerial vehicles (UAVs). First, with considering the characteristics of collision avoidance problem, a collision prediction method is proposed to identify the neighboring UAVs with a significant threat. A convolutional neural network model is devised to extract the dynamic environment features. Second, a trajectory tracking macro action is incorporated into the action space of the proposed DRL-based algorithm. Guided by the reward function that considers to reward for closing to the preset flight paths, UAVs could return to the preset flight path after completing the collision avoidance. The proposed method is trained in simulation scenarios, with model updates implemented using a soft actor-critic (SAC) algorithm. Validation experiments are conducted in several complex multi-UAV flight environments. The results demonstrate the superiority of our method over other advanced methods.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 3","pages":"2152-2159"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10833826/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This letter introduces a novel deep reinforcement learning (DRL) method for collision avoidance problem of fixed-wing unmanned aerial vehicles (UAVs). First, with considering the characteristics of collision avoidance problem, a collision prediction method is proposed to identify the neighboring UAVs with a significant threat. A convolutional neural network model is devised to extract the dynamic environment features. Second, a trajectory tracking macro action is incorporated into the action space of the proposed DRL-based algorithm. Guided by the reward function that considers to reward for closing to the preset flight paths, UAVs could return to the preset flight path after completing the collision avoidance. The proposed method is trained in simulation scenarios, with model updates implemented using a soft actor-critic (SAC) algorithm. Validation experiments are conducted in several complex multi-UAV flight environments. The results demonstrate the superiority of our method over other advanced methods.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.