Reconstructed and Simulated Dataset for Aerial RGBD Tracking

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Juntao Liang;Jiaqi Zhou;Wei Li;Yong Wang;Tianjiang Hu;Qi Wu
{"title":"Reconstructed and Simulated Dataset for Aerial RGBD Tracking","authors":"Juntao Liang;Jiaqi Zhou;Wei Li;Yong Wang;Tianjiang Hu;Qi Wu","doi":"10.1109/LRA.2025.3526565","DOIUrl":null,"url":null,"abstract":"Unmanned Aerial Vehicles (UAVs) are increasingly utilized across commercial, military, and public safety domains, where target tracking is crucial for imagery content analysis and various applications. This letter explores the challenges in UAV target tracking, particularly addressing deficiencies in RGBD tracking datasets and algorithms for aerial targets. We introduce a new dataset, the Reconstructed and Simulated Aerial RGBD Tracking Dataset (RSTrack), created by reconstructing an existing aerial tracking dataset through depth estimation and enhancing it with simulation environments, containing 209 challenging sequences with over 247 K frames. Experiments conducted on RSTrack demonstrate the effectiveness of depth information in improving aerial target tracking and the benefits of simulation data in enhancing the performance of RGBD trackers in UAV applications. Furthermore, we develop Shallow Feature Fusion-based RGBD Tracking (SFT). Our results indicate that SFT achieves an optimal balance between robustness and speed for UAV applications. These findings are expected to offer a valuable dataset for RGBD tracking and advance methodologies in the field of aerial target tracking.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"2008-2015"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10829654/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Unmanned Aerial Vehicles (UAVs) are increasingly utilized across commercial, military, and public safety domains, where target tracking is crucial for imagery content analysis and various applications. This letter explores the challenges in UAV target tracking, particularly addressing deficiencies in RGBD tracking datasets and algorithms for aerial targets. We introduce a new dataset, the Reconstructed and Simulated Aerial RGBD Tracking Dataset (RSTrack), created by reconstructing an existing aerial tracking dataset through depth estimation and enhancing it with simulation environments, containing 209 challenging sequences with over 247 K frames. Experiments conducted on RSTrack demonstrate the effectiveness of depth information in improving aerial target tracking and the benefits of simulation data in enhancing the performance of RGBD trackers in UAV applications. Furthermore, we develop Shallow Feature Fusion-based RGBD Tracking (SFT). Our results indicate that SFT achieves an optimal balance between robustness and speed for UAV applications. These findings are expected to offer a valuable dataset for RGBD tracking and advance methodologies in the field of aerial target tracking.
航空RGBD跟踪重建与模拟数据集
无人机(uav)越来越多地应用于商业、军事和公共安全领域,其中目标跟踪对于图像内容分析和各种应用至关重要。这封信探讨了无人机目标跟踪的挑战,特别是解决了RGBD跟踪数据集和空中目标算法的缺陷。我们介绍了一个新的数据集,重建和模拟空中RGBD跟踪数据集(RSTrack),该数据集是通过深度估计重建现有的空中跟踪数据集并使用模拟环境对其进行增强而创建的,包含209个具有挑战性的序列,帧数超过247k。在RSTrack上进行的实验证明了深度信息在改善空中目标跟踪方面的有效性,以及仿真数据在提高RGBD跟踪器在无人机应用中的性能方面的优势。此外,我们还开发了基于浅特征融合的RGBD跟踪(SFT)。我们的结果表明,SFT在无人机应用中实现了鲁棒性和速度之间的最佳平衡。这些发现有望为RGBD跟踪提供有价值的数据集,并在空中目标跟踪领域提供先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信