{"title":"Modular Self-Reconfigurable Continuum Robot for General Purpose Loco-Manipulation","authors":"Yilin Cai;Haokai Xu;Yifan Wang;Desai Chen;Wojciech Matusik;Wan Shou;Yue Chen","doi":"10.1109/LRA.2025.3526560","DOIUrl":null,"url":null,"abstract":"Modular Self-Reconfigurable Robots offer exceptional adaptability and versatility through reconfiguration, but traditional rigid robot designs lack the compliance necessary for effective interaction with complex environments. Recent advancements in modular soft robots address this shortcoming with enhanced flexibility; however, their designs lack the capability of active self-reconfiguration and heavily rely on manual assembly. In this letter, we present a modular self-reconfigurable soft continuum robotic system featuring a continuum backbone and an omnidirectional docking mechanism. This design enables each module to independently perform loco-manipulation and self-reconfiguration. We then propose a kinetostatic model and conduct a geometrical docking range analysis to characterize the robot's performance. The reconfiguration process and the distinct motion gait for each configuration are also developed, including rolling, crawling, and snake-like undulation. Experimental demonstrations show that both single and multiple connected modules can achieve successful loco-manipulation, adapting effectively to various environments.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"1976-1983"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10829627/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Modular Self-Reconfigurable Robots offer exceptional adaptability and versatility through reconfiguration, but traditional rigid robot designs lack the compliance necessary for effective interaction with complex environments. Recent advancements in modular soft robots address this shortcoming with enhanced flexibility; however, their designs lack the capability of active self-reconfiguration and heavily rely on manual assembly. In this letter, we present a modular self-reconfigurable soft continuum robotic system featuring a continuum backbone and an omnidirectional docking mechanism. This design enables each module to independently perform loco-manipulation and self-reconfiguration. We then propose a kinetostatic model and conduct a geometrical docking range analysis to characterize the robot's performance. The reconfiguration process and the distinct motion gait for each configuration are also developed, including rolling, crawling, and snake-like undulation. Experimental demonstrations show that both single and multiple connected modules can achieve successful loco-manipulation, adapting effectively to various environments.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.