Probing and manipulating the Mexican hat-shaped valence band of In2Se3

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
James Felton, Jordan Harknett, Joe Page, Zhuo Yang, Nada Alghofaili, James N. O’Shea, Laurence Eaves, Yoshimitsu Kohama, Mark T. Greenaway, Amalia Patanè
{"title":"Probing and manipulating the Mexican hat-shaped valence band of In2Se3","authors":"James Felton, Jordan Harknett, Joe Page, Zhuo Yang, Nada Alghofaili, James N. O’Shea, Laurence Eaves, Yoshimitsu Kohama, Mark T. Greenaway, Amalia Patanè","doi":"10.1038/s41467-025-56139-8","DOIUrl":null,"url":null,"abstract":"<p>Ferroelectrics based on van der Waals semiconductors represent an emergent class of materials for disruptive technologies ranging from neuromorphic computing to low-power electronics. However, many theoretical predictions of their electronic properties have yet to be confirmed experimentally and exploited. Here, we use nanoscale angle-resolved photoemission electron spectroscopy and optical transmission in high magnetic fields to reveal the electronic band structure of the van der Waals ferroelectric indium selenide (α-In<sub>2</sub>Se<sub>3</sub>). This indirect bandgap semiconductor features a weakly dispersed valence band, which is shaped like an inverted Mexican hat. Its form changes following an irreversible structural phase transition of α-In<sub>2</sub>Se<sub>3</sub> into β-In<sub>2</sub>Se<sub>3</sub> via a thermal annealing in ultra-high vacuum. Density functional theory supports the experiments and reveals the critical contribution of spin orbit coupling to the form of the valence band. The measured band structure and its in situ manipulation offer opportunities for precise engineering of ferroelectrics and their functional properties beyond traditional semiconducting systems.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"148 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56139-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroelectrics based on van der Waals semiconductors represent an emergent class of materials for disruptive technologies ranging from neuromorphic computing to low-power electronics. However, many theoretical predictions of their electronic properties have yet to be confirmed experimentally and exploited. Here, we use nanoscale angle-resolved photoemission electron spectroscopy and optical transmission in high magnetic fields to reveal the electronic band structure of the van der Waals ferroelectric indium selenide (α-In2Se3). This indirect bandgap semiconductor features a weakly dispersed valence band, which is shaped like an inverted Mexican hat. Its form changes following an irreversible structural phase transition of α-In2Se3 into β-In2Se3 via a thermal annealing in ultra-high vacuum. Density functional theory supports the experiments and reveals the critical contribution of spin orbit coupling to the form of the valence band. The measured band structure and its in situ manipulation offer opportunities for precise engineering of ferroelectrics and their functional properties beyond traditional semiconducting systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信