James Felton, Jordan Harknett, Joe Page, Zhuo Yang, Nada Alghofaili, James N. O’Shea, Laurence Eaves, Yoshimitsu Kohama, Mark T. Greenaway, Amalia Patanè
{"title":"Probing and manipulating the Mexican hat-shaped valence band of In2Se3","authors":"James Felton, Jordan Harknett, Joe Page, Zhuo Yang, Nada Alghofaili, James N. O’Shea, Laurence Eaves, Yoshimitsu Kohama, Mark T. Greenaway, Amalia Patanè","doi":"10.1038/s41467-025-56139-8","DOIUrl":null,"url":null,"abstract":"<p>Ferroelectrics based on van der Waals semiconductors represent an emergent class of materials for disruptive technologies ranging from neuromorphic computing to low-power electronics. However, many theoretical predictions of their electronic properties have yet to be confirmed experimentally and exploited. Here, we use nanoscale angle-resolved photoemission electron spectroscopy and optical transmission in high magnetic fields to reveal the electronic band structure of the van der Waals ferroelectric indium selenide (α-In<sub>2</sub>Se<sub>3</sub>). This indirect bandgap semiconductor features a weakly dispersed valence band, which is shaped like an inverted Mexican hat. Its form changes following an irreversible structural phase transition of α-In<sub>2</sub>Se<sub>3</sub> into β-In<sub>2</sub>Se<sub>3</sub> via a thermal annealing in ultra-high vacuum. Density functional theory supports the experiments and reveals the critical contribution of spin orbit coupling to the form of the valence band. The measured band structure and its in situ manipulation offer opportunities for precise engineering of ferroelectrics and their functional properties beyond traditional semiconducting systems.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"148 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56139-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ferroelectrics based on van der Waals semiconductors represent an emergent class of materials for disruptive technologies ranging from neuromorphic computing to low-power electronics. However, many theoretical predictions of their electronic properties have yet to be confirmed experimentally and exploited. Here, we use nanoscale angle-resolved photoemission electron spectroscopy and optical transmission in high magnetic fields to reveal the electronic band structure of the van der Waals ferroelectric indium selenide (α-In2Se3). This indirect bandgap semiconductor features a weakly dispersed valence band, which is shaped like an inverted Mexican hat. Its form changes following an irreversible structural phase transition of α-In2Se3 into β-In2Se3 via a thermal annealing in ultra-high vacuum. Density functional theory supports the experiments and reveals the critical contribution of spin orbit coupling to the form of the valence band. The measured band structure and its in situ manipulation offer opportunities for precise engineering of ferroelectrics and their functional properties beyond traditional semiconducting systems.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.