Treadmill exercise prevents stress-induced anxiety-like behaviors via enhancing the excitatory input from the primary motor cortex to the thalamocortical circuit

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhihua Luo, Junlin Chen, Yuchu Liu, Yelin Dai, Hui Gao, Borui Zhang, Haibin Ou, Kwok-Fai So, Ji-an Wei, Li Zhang
{"title":"Treadmill exercise prevents stress-induced anxiety-like behaviors via enhancing the excitatory input from the primary motor cortex to the thalamocortical circuit","authors":"Zhihua Luo, Junlin Chen, Yuchu Liu, Yelin Dai, Hui Gao, Borui Zhang, Haibin Ou, Kwok-Fai So, Ji-an Wei, Li Zhang","doi":"10.1038/s41467-025-56258-2","DOIUrl":null,"url":null,"abstract":"<p>Physical exercise effectively prevents anxiety disorders caused by environmental stress. The neural circuitry mechanism, however, remains incomplete. Here, we identified a previously unrecognized pathway originating from the primary motor cortex (M1) to medial prefrontal cortex (mPFC) via the ventromedial thalamic (VM) nuclei in male mice. Besides anatomical evidence, both ex vivo and in vivo recordings showed enhanced excitability of M1-VM inputs to the prelimbic (PrL) region of mPFC upon 14-day treadmill exercise on a chronic restraint stress (CRS) mouse model. Further functional interrogations demonstrated that the activation of this neural circuit is both necessary and sufficient to direct the anxiolytic effect of exercise training in CRS mice. Our findings provide more insights into the neural circuits connecting motor and mental regions under exercise paradigm and implicate potential targets for neuromodulation in treating anxiety disorders.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"28 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56258-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Physical exercise effectively prevents anxiety disorders caused by environmental stress. The neural circuitry mechanism, however, remains incomplete. Here, we identified a previously unrecognized pathway originating from the primary motor cortex (M1) to medial prefrontal cortex (mPFC) via the ventromedial thalamic (VM) nuclei in male mice. Besides anatomical evidence, both ex vivo and in vivo recordings showed enhanced excitability of M1-VM inputs to the prelimbic (PrL) region of mPFC upon 14-day treadmill exercise on a chronic restraint stress (CRS) mouse model. Further functional interrogations demonstrated that the activation of this neural circuit is both necessary and sufficient to direct the anxiolytic effect of exercise training in CRS mice. Our findings provide more insights into the neural circuits connecting motor and mental regions under exercise paradigm and implicate potential targets for neuromodulation in treating anxiety disorders.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信