Response of Extreme North Atlantic Midlatitude Cyclones to a Warmer Climate in the GFDL X-SHiELD Kilometer-Scale Global Storm-Resolving Model

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Emanuele Silvio Gentile, Lucas Harris, Ming Zhao, Kevin Hodges, Zhihong Tan, Kai-Yuan Cheng, Linjiong Zhou
{"title":"Response of Extreme North Atlantic Midlatitude Cyclones to a Warmer Climate in the GFDL X-SHiELD Kilometer-Scale Global Storm-Resolving Model","authors":"Emanuele Silvio Gentile, Lucas Harris, Ming Zhao, Kevin Hodges, Zhihong Tan, Kai-Yuan Cheng, Linjiong Zhou","doi":"10.1029/2024gl112570","DOIUrl":null,"url":null,"abstract":"Using the novel kilometer-scale global storm-resolving model Geophysical Fluid Dynamics Laboratory eXperimental System for High-resolution prediction on Earth-to-Local Domains (X-SHiELD), we investigate the impact of a 4 K increase in sea surface temperatures on Northern Hemisphere midlatitude cyclones, during the January 2020–January 2022 period. X-SHiELD simulations reveal a poleward shift in cyclone tracks under warming, consistent with CMIP projections. However, X-SHiELD's high resolution and explicit deep convection allowed for a detailed analysis of the warm and cold sectors, which are instead typically underrepresented in traditional CMIP models. Instead, compositing the 100 most intense midlatitude cyclones in the North Atlantic, we find that the warm sector exhibits statistically significant increases in wind speed and precipitation of up to 15% locally per degree of warming, while changes in the cold sector are less pronounced. This study demonstrates X-SHiELD's potential to provide a realistic-looking perspective into the evolving risks posed by midlatitude cyclones in a warming climate.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"103 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024gl112570","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Using the novel kilometer-scale global storm-resolving model Geophysical Fluid Dynamics Laboratory eXperimental System for High-resolution prediction on Earth-to-Local Domains (X-SHiELD), we investigate the impact of a 4 K increase in sea surface temperatures on Northern Hemisphere midlatitude cyclones, during the January 2020–January 2022 period. X-SHiELD simulations reveal a poleward shift in cyclone tracks under warming, consistent with CMIP projections. However, X-SHiELD's high resolution and explicit deep convection allowed for a detailed analysis of the warm and cold sectors, which are instead typically underrepresented in traditional CMIP models. Instead, compositing the 100 most intense midlatitude cyclones in the North Atlantic, we find that the warm sector exhibits statistically significant increases in wind speed and precipitation of up to 15% locally per degree of warming, while changes in the cold sector are less pronounced. This study demonstrates X-SHiELD's potential to provide a realistic-looking perspective into the evolving risks posed by midlatitude cyclones in a warming climate.
GFDL X-SHiELD千米尺度全球风暴分解模式下北大西洋极端中纬度气旋对变暖气候的响应
利用新型千米尺度全球风暴分辨模式地球物理流体动力学实验室高分辨率地-局部域预测系统(X-SHiELD),研究了2020年1月至2022年1月期间海面温度升高4 K对北半球中纬度气旋的影响。X-SHiELD模拟显示气旋路径在变暖下向极地移动,与CMIP预测一致。然而,X-SHiELD的高分辨率和明确的深层对流允许对冷热扇区进行详细分析,而传统的CMIP模型通常没有充分代表这些扇区。相反,综合北大西洋100个最强烈的中纬度气旋,我们发现,每升温一度,温暖地区的风速和降水在统计上显著增加,最高可达15%,而寒冷地区的变化则不那么明显。这项研究证明了X-SHiELD的潜力,为气候变暖的中纬度气旋带来的不断变化的风险提供了一个现实的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信