{"title":"Large-scale continuous production of cellulose/hollow SiO2 composite aerogel fibers for outdoor all-day radiation cooling","authors":"Shan Jiang, Shaoqi Jiang, Jiatong Yan, Chuanxi Lin, Weijie Wang, Shouxiang Jiang, Ronghui Guo","doi":"10.1016/j.nanoen.2025.110688","DOIUrl":null,"url":null,"abstract":"Passive radiant cooling fabrics (PRCF) can effectively reduce the human body surface temperature and alleviate heat stress without consuming energy. These textiles show tremendous potential for personal thermal management and are widely used in outdoor sports, high-temperature operations and other scenarios. However, the development of fiber products with radiative cooling properties from biomass resources presents a considerable challenge. Herein, the hollow silica/regenerated cellulose composite aerogel fibers with a tree-ring structure (HSiO<sub>2</sub>/C@C) were continuously fabricated by a novel strategy combining wet coaxial spinning and atmospheric pressure drying. Regenerated cellulose aerogel mixed with hollow silica as a sheath layer imparts the fibers with strong backscattering properties, higher porosity, and guarantees high solar reflectance (92.6%), high infrared emissivity (96.1%), and improved thermal insulation (0.062<!-- --> <!-- -->W·m<sup>-1</sup>K<sup>-1</sup>). The relatively dense cellulose aerogel core layer provides the composite fibers with robust mechanical strength (19.4<!-- --> <!-- -->MPa). The outdoor all-day test further demonstrated that the HSiO<sub>2</sub>/C@C fibers exhibit high-performance cooling with an average sub-ambient temperature drop of ~1.3°C under 850<!-- --> <!-- -->W·m<sup>-2</sup> solar irradiation and ~ 4.2°C for nighttime. The fabric-covered arm showed a temperature reduction of 4°C compared with that covered with cotton fabric. The passive radiation cooling textile can also apply to buildings, vehicles and other fields contributing to energy saving and environmental protection. In addition, the hydrophobic modified aerogel fabric shows good comprehensive outdoor-services performance, including good air permeability, anti-dust and durability, thus broadening its applicability in complex environments. This scalable and renewable composite aerogel fiber holds promise as the next generation of personal thermal management textiles for all-day superior radiant cooling.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"20 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2025.110688","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Passive radiant cooling fabrics (PRCF) can effectively reduce the human body surface temperature and alleviate heat stress without consuming energy. These textiles show tremendous potential for personal thermal management and are widely used in outdoor sports, high-temperature operations and other scenarios. However, the development of fiber products with radiative cooling properties from biomass resources presents a considerable challenge. Herein, the hollow silica/regenerated cellulose composite aerogel fibers with a tree-ring structure (HSiO2/C@C) were continuously fabricated by a novel strategy combining wet coaxial spinning and atmospheric pressure drying. Regenerated cellulose aerogel mixed with hollow silica as a sheath layer imparts the fibers with strong backscattering properties, higher porosity, and guarantees high solar reflectance (92.6%), high infrared emissivity (96.1%), and improved thermal insulation (0.062 W·m-1K-1). The relatively dense cellulose aerogel core layer provides the composite fibers with robust mechanical strength (19.4 MPa). The outdoor all-day test further demonstrated that the HSiO2/C@C fibers exhibit high-performance cooling with an average sub-ambient temperature drop of ~1.3°C under 850 W·m-2 solar irradiation and ~ 4.2°C for nighttime. The fabric-covered arm showed a temperature reduction of 4°C compared with that covered with cotton fabric. The passive radiation cooling textile can also apply to buildings, vehicles and other fields contributing to energy saving and environmental protection. In addition, the hydrophobic modified aerogel fabric shows good comprehensive outdoor-services performance, including good air permeability, anti-dust and durability, thus broadening its applicability in complex environments. This scalable and renewable composite aerogel fiber holds promise as the next generation of personal thermal management textiles for all-day superior radiant cooling.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.