Suppression strategy of interfacial defects: γ-ray-induced nano structural rearrangement of NiOx sol-gel for highly sensitive organic photodetectors

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Byung Gi Kim, Ji Yun Chun, Jae Sang Cho, Du Heon Ha, Woongsik Jang, Dong Hwan Wang
{"title":"Suppression strategy of interfacial defects: γ-ray-induced nano structural rearrangement of NiOx sol-gel for highly sensitive organic photodetectors","authors":"Byung Gi Kim, Ji Yun Chun, Jae Sang Cho, Du Heon Ha, Woongsik Jang, Dong Hwan Wang","doi":"10.1016/j.nanoen.2025.110695","DOIUrl":null,"url":null,"abstract":"This study investigated the effects of γ-ray treatment on the NiO<sub>x</sub> (γ-Fixing NiO<sub>x</sub>) interlayer and the consequent impact on the performance of organic photodetectors. γ-Fixing NiO<sub>x</sub> sol-gels had reduced particle size distribution (4.26 ± 0.65<!-- --> <!-- -->nm) and exhibit improved uniformity. The root-mean-square (RMS) roughness analysis revealed that the γ-Fixing sample exhibited 1.12<!-- --> <!-- -->nm. It was 51.35% higher than that of the Pristine sample but 54.29% lower than that of the conventional Fixing sample. XPS analysis (<span><span>Figure 3</span></span>a,b) showed concurrent intensity increases in both oxidation states from pristine to γ-Fixing: Ni<sub>2</sub>O<sub>3</sub> (856.5<!-- --> <!-- -->eV, +0.89%) and NiO (854.0<!-- --> <!-- -->eV, +1.81%). This resulted in a modified NiO/Ni<sub>2</sub>O<sub>3</sub> ratio (1.003→1.013), supported by decreased Ni:O ratios (1:1.81→1:1.40) from EDS analysis (<span><span>Figure 2</span></span><strong> <!-- -->h</strong>), enhanced Ni-O bonding (676<!-- --> <!-- -->cm<sup>-1</sup>) in FT-IR spectra (<span><span>Figure 3</span></span><strong> <!-- -->f</strong>), and improved oxidation resistance (E<sub>onset,ox</sub>: 0.38<!-- --> <!-- -->V→0.41<!-- --> <!-- -->V) as shown in cyclic voltammetry data (<span><span>Figure S1a</span></span><strong>-c</strong> and <span><span>Table S1</span></span>). These structural changes enhanced the electrical properties of the NiO<sub>x</sub> film, thereby significantly improving the performance of the fabricated organic photodetectors. The γ-ray-treated device exhibited a 99.29% reduction in dark current density to 8.00 × 10<sup>−11</sup> A/cm<sup>2</sup>, an improved ideality factor of 1.38, and a 30.87% decrease in the defect state energy to 71.2<!-- --> <!-- -->meV. Furthermore, the external quantum efficiency was &gt;80% in the visible range and shot noise-limited detectivity was 1.00 × 10<sup>14</sup> Jones - an 11.65-fold improvement in relation to that of the untreated sample. These findings demonstrated that γ-ray treatment effectively enhances the properties of the NiO<sub>x</sub> interlayer and would promote developing high-performance organic photodetectors.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"3 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2025.110695","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the effects of γ-ray treatment on the NiOx (γ-Fixing NiOx) interlayer and the consequent impact on the performance of organic photodetectors. γ-Fixing NiOx sol-gels had reduced particle size distribution (4.26 ± 0.65 nm) and exhibit improved uniformity. The root-mean-square (RMS) roughness analysis revealed that the γ-Fixing sample exhibited 1.12 nm. It was 51.35% higher than that of the Pristine sample but 54.29% lower than that of the conventional Fixing sample. XPS analysis (Figure 3a,b) showed concurrent intensity increases in both oxidation states from pristine to γ-Fixing: Ni2O3 (856.5 eV, +0.89%) and NiO (854.0 eV, +1.81%). This resulted in a modified NiO/Ni2O3 ratio (1.003→1.013), supported by decreased Ni:O ratios (1:1.81→1:1.40) from EDS analysis (Figure 2 h), enhanced Ni-O bonding (676 cm-1) in FT-IR spectra (Figure 3 f), and improved oxidation resistance (Eonset,ox: 0.38 V→0.41 V) as shown in cyclic voltammetry data (Figure S1a-c and Table S1). These structural changes enhanced the electrical properties of the NiOx film, thereby significantly improving the performance of the fabricated organic photodetectors. The γ-ray-treated device exhibited a 99.29% reduction in dark current density to 8.00 × 10−11 A/cm2, an improved ideality factor of 1.38, and a 30.87% decrease in the defect state energy to 71.2 meV. Furthermore, the external quantum efficiency was >80% in the visible range and shot noise-limited detectivity was 1.00 × 1014 Jones - an 11.65-fold improvement in relation to that of the untreated sample. These findings demonstrated that γ-ray treatment effectively enhances the properties of the NiOx interlayer and would promote developing high-performance organic photodetectors.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信