Phase Transition Behavior During Sintering Process of Li-Rich Materials

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Mengke Zhang, Jiayang Li, Qi Pang, Weibo Hua, Yuting Deng, Manqi Tang, Weikong Pang, Zhenguo Wu, Benhe Zhong, Yao Xiao, Lang Qiu, Xiaodong Guo
{"title":"Phase Transition Behavior During Sintering Process of Li-Rich Materials","authors":"Mengke Zhang, Jiayang Li, Qi Pang, Weibo Hua, Yuting Deng, Manqi Tang, Weikong Pang, Zhenguo Wu, Benhe Zhong, Yao Xiao, Lang Qiu, Xiaodong Guo","doi":"10.1002/aenm.202406031","DOIUrl":null,"url":null,"abstract":"Phase transition serves as an ordinary behavior occurring during the high-temperature calcination process, while it becomes quite complicated in Li-rich materials composed of rhombohedral phase LiTMO<sub>2</sub> (TM: Ni, Mn) with <i>R</i><span data-altimg=\"/cms/asset/8075c819-931b-4ff7-b149-7f022f6f6fe5/aenm202406031-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"2\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/aenm202406031-math-0001.png\"><mjx-semantics><mjx-mover data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"integer\" data-semantic-speech=\"ModifyingAbove 3 With bar\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.105em; margin-bottom: -0.544em;\"><mjx-mo data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\"><mjx-stretchy-h style=\"width: 0.5em;\"><mjx-ext><mjx-c></mjx-c></mjx-ext></mjx-stretchy-h></mjx-mo></mjx-over><mjx-base><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-base></mjx-mover></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:16146832:media:aenm202406031:aenm202406031-math-0001\" display=\"inline\" location=\"graphic/aenm202406031-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mover accent=\"true\" data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"integer\" data-semantic-speech=\"ModifyingAbove 3 With bar\" data-semantic-type=\"overscore\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">3</mn><mo data-semantic-=\"\" data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\">¯</mo></mover>${\\bar{3}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container><i>m</i> space group and monoclinic phase Li<sub>2</sub>TMO<sub>3</sub> with <i>C</i>2/<i>m</i> space group. Yet to be firmly elucidated is how the precursor transforms into LiTMO<sub>2</sub> (<i>R</i><span data-altimg=\"/cms/asset/0575498d-35a3-4359-92fa-12776aeebbb1/aenm202406031-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"3\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/aenm202406031-math-0002.png\"><mjx-semantics><mjx-mover data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"integer\" data-semantic-speech=\"ModifyingAbove 3 With bar\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.105em; margin-bottom: -0.544em;\"><mjx-mo data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\"><mjx-stretchy-h style=\"width: 0.5em;\"><mjx-ext><mjx-c></mjx-c></mjx-ext></mjx-stretchy-h></mjx-mo></mjx-over><mjx-base><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-base></mjx-mover></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:16146832:media:aenm202406031:aenm202406031-math-0002\" display=\"inline\" location=\"graphic/aenm202406031-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mover accent=\"true\" data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"integer\" data-semantic-speech=\"ModifyingAbove 3 With bar\" data-semantic-type=\"overscore\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">3</mn><mo data-semantic-=\"\" data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\">¯</mo></mover>${\\bar{3}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container><i>m</i>)-Li<sub>2</sub>TMO<sub>3</sub> (<i>C</i>2/<i>m</i>) compound and what is the precise conversion mechanism between these two phases. This work systematically elaborates the structural evolution with Li/O incorporation during calcination, and proposes a LiTMO<sub>2</sub> to Li<sub>2</sub>TMO<sub>3</sub> phase transition mechanism. A series of characterizations on structural rearrangement and detailed analysis provide insights into the comprehension of this transition, i.e., the transition metal (TM) vacancies induced by interlayer TM ions migration function as the primary reason driving the transformation from LiTMO<sub>2</sub> to Li<sub>2</sub>TMO<sub>3</sub>. This work offers a novel concept for the structural regulation in Li-rich cathodes.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"84 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202406031","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Phase transition serves as an ordinary behavior occurring during the high-temperature calcination process, while it becomes quite complicated in Li-rich materials composed of rhombohedral phase LiTMO2 (TM: Ni, Mn) with R3¯${\bar{3}}$m space group and monoclinic phase Li2TMO3 with C2/m space group. Yet to be firmly elucidated is how the precursor transforms into LiTMO2 (R3¯${\bar{3}}$m)-Li2TMO3 (C2/m) compound and what is the precise conversion mechanism between these two phases. This work systematically elaborates the structural evolution with Li/O incorporation during calcination, and proposes a LiTMO2 to Li2TMO3 phase transition mechanism. A series of characterizations on structural rearrangement and detailed analysis provide insights into the comprehension of this transition, i.e., the transition metal (TM) vacancies induced by interlayer TM ions migration function as the primary reason driving the transformation from LiTMO2 to Li2TMO3. This work offers a novel concept for the structural regulation in Li-rich cathodes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信