Double-sided van der Waals epitaxy of topological insulators across an atomically thin membrane

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joon Young Park, Young Jae Shin, Jeacheol Shin, Jehyun Kim, Janghyun Jo, Hyobin Yoo, Danial Haei, Chohee Hyun, Jiyoung Yun, Robert M. Huber, Arijit Gupta, Kenji Watanabe, Takashi Taniguchi, Wan Kyu Park, Hyeon Suk Shin, Miyoung Kim, Dohun Kim, Gyu-Chul Yi, Philip Kim
{"title":"Double-sided van der Waals epitaxy of topological insulators across an atomically thin membrane","authors":"Joon Young Park, Young Jae Shin, Jeacheol Shin, Jehyun Kim, Janghyun Jo, Hyobin Yoo, Danial Haei, Chohee Hyun, Jiyoung Yun, Robert M. Huber, Arijit Gupta, Kenji Watanabe, Takashi Taniguchi, Wan Kyu Park, Hyeon Suk Shin, Miyoung Kim, Dohun Kim, Gyu-Chul Yi, Philip Kim","doi":"10.1038/s41563-024-02079-5","DOIUrl":null,"url":null,"abstract":"<p>Atomically thin van der Waals (vdW) films provide a material platform for the epitaxial growth of quantum heterostructures. However, unlike the remote epitaxial growth of three-dimensional bulk crystals, the growth of two-dimensional material heterostructures across atomic layers has been limited due to the weak vdW interaction. Here we report the double-sided epitaxy of vdW layered materials through atomic membranes. We grow vdW topological insulators Sb<sub>2</sub>Te<sub>3</sub> and Bi<sub>2</sub>Se<sub>3</sub> by molecular-beam epitaxy on both surfaces of atomically thin graphene or hexagonal boron nitride, which serve as suspended two-dimensional vdW substrate layers. Both homo- and hetero-double-sided vdW topological insulator tunnel junctions are fabricated, with the atomically thin hexagonal boron nitride acting as a crystal-momentum-conserving tunnelling barrier with abrupt and epitaxial interfaces. By performing field-angle-dependent magneto-tunnelling spectroscopy on these devices, we reveal the energy–momentum–spin resonance of massless Dirac electrons tunnelling between helical Landau levels developed in the topological surface states at the interfaces.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"25 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-024-02079-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Atomically thin van der Waals (vdW) films provide a material platform for the epitaxial growth of quantum heterostructures. However, unlike the remote epitaxial growth of three-dimensional bulk crystals, the growth of two-dimensional material heterostructures across atomic layers has been limited due to the weak vdW interaction. Here we report the double-sided epitaxy of vdW layered materials through atomic membranes. We grow vdW topological insulators Sb2Te3 and Bi2Se3 by molecular-beam epitaxy on both surfaces of atomically thin graphene or hexagonal boron nitride, which serve as suspended two-dimensional vdW substrate layers. Both homo- and hetero-double-sided vdW topological insulator tunnel junctions are fabricated, with the atomically thin hexagonal boron nitride acting as a crystal-momentum-conserving tunnelling barrier with abrupt and epitaxial interfaces. By performing field-angle-dependent magneto-tunnelling spectroscopy on these devices, we reveal the energy–momentum–spin resonance of massless Dirac electrons tunnelling between helical Landau levels developed in the topological surface states at the interfaces.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信