Unlocking Advanced Architectures of Single-Crystal Metal-Organic Frameworks

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Minchao Liu, Zirui Lv, Yao Peng, Yufang Kou, Tiancong Zhao, Hongyue Yu, Jia Jia, Lifei Gao, Cheng Shang, Fan Zhang, Dongyuan Zhao, Xiaomin Li
{"title":"Unlocking Advanced Architectures of Single-Crystal Metal-Organic Frameworks","authors":"Minchao Liu, Zirui Lv, Yao Peng, Yufang Kou, Tiancong Zhao, Hongyue Yu, Jia Jia, Lifei Gao, Cheng Shang, Fan Zhang, Dongyuan Zhao, Xiaomin Li","doi":"10.1002/anie.202423939","DOIUrl":null,"url":null,"abstract":"The synthesis of metal-organic frameworks (MOFs) with diverse geometries has captivated considerable interest due to their manifestation of novel and extraordinary properties. While much progress has been made in shaping regular polyhedral single-crystal MOFs, the creation of more complex, topologically intricate nanostructures remains a largely unexplored frontier. Here, we present a refined site-specific anisotropic assembly and etching co-mediation approach to fabricate a series of hierarchical MOF nanohybrids and single-crystal MOFs. This approach yields ZIF-8&mSiO2 nanohybrids with diverse topologies, alongside derived single-crystal MOF nanoparticles exhibiting intricate morphologies such as hexapods, nested nanocages, and octopods. Our method involves the selective growth of six mSiO2 nanoplates on the {100} facets of ZIF-8 nanocubes, forming the cubic-shaped ZIF-8&mSiO2 nanohybrids, with the concurrent etching of the {110} facets of initial ZIF-8 nanocubes. By fine-tuning this balance between the growth and etching, we achieved precise morphological control, transforming cubic nanohybrids into intricate hexapods nanohybrids. Additionally, secondary epitaxial growth of homo- or hetero-MOFs on these hybrids led to ZIF-8&mSiO2&MOF composites with six mSiO2 inlays. Finally, selective alkaline etching of the mSiO2 compartments result in single-crystal MOF nanoparticles with unprecedented and sophisticated morphologies, such as hexapods, nested nanocages, octopods.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"9 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202423939","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The synthesis of metal-organic frameworks (MOFs) with diverse geometries has captivated considerable interest due to their manifestation of novel and extraordinary properties. While much progress has been made in shaping regular polyhedral single-crystal MOFs, the creation of more complex, topologically intricate nanostructures remains a largely unexplored frontier. Here, we present a refined site-specific anisotropic assembly and etching co-mediation approach to fabricate a series of hierarchical MOF nanohybrids and single-crystal MOFs. This approach yields ZIF-8&mSiO2 nanohybrids with diverse topologies, alongside derived single-crystal MOF nanoparticles exhibiting intricate morphologies such as hexapods, nested nanocages, and octopods. Our method involves the selective growth of six mSiO2 nanoplates on the {100} facets of ZIF-8 nanocubes, forming the cubic-shaped ZIF-8&mSiO2 nanohybrids, with the concurrent etching of the {110} facets of initial ZIF-8 nanocubes. By fine-tuning this balance between the growth and etching, we achieved precise morphological control, transforming cubic nanohybrids into intricate hexapods nanohybrids. Additionally, secondary epitaxial growth of homo- or hetero-MOFs on these hybrids led to ZIF-8&mSiO2&MOF composites with six mSiO2 inlays. Finally, selective alkaline etching of the mSiO2 compartments result in single-crystal MOF nanoparticles with unprecedented and sophisticated morphologies, such as hexapods, nested nanocages, octopods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信