Metagenomic and enzymatic mechanisms underpinning efficient water treatment of 2-ethylhexyl diphenyl phosphate (EHDPP) by the microbial consortium 8-ZY
{"title":"Metagenomic and enzymatic mechanisms underpinning efficient water treatment of 2-ethylhexyl diphenyl phosphate (EHDPP) by the microbial consortium 8-ZY","authors":"Yuanyuan Yu, Wantang Huang, Shaoyu Tang, Ying Xiang, Lizhu Yuan, Xifen Zhu, Hua Yin, Zhi Dang, Junfeng Niu","doi":"10.1016/j.watres.2025.123178","DOIUrl":null,"url":null,"abstract":"The ubiquitous presence, potential toxicity, and persistence of 2-ethylhexyl diphenyl phosphate (EHDPP) in the environment have raised significant concerns. In this study, we successfully isolate a novel microbial consortium, named 8-ZY, and we demonstrate its remarkable ability to degrade EHDPP using an extremely low concentration of the inoculate. A total of 11 degradation metabolites were identified, including hydrolysis, hydroxylated, methylated, glucuronide-conjugated, and previously unreported byproducts, enabling us to propose new transformation pathways. Further, we unveiled the active members of the microbial consortium 8-ZY during the degradation of EHDPP. We observed the presence of diverse active populations, which included <em>Bradyrhizobium, Rhodopseudomonas, Sphingomonas, Hyphomicrobium, Chitinophaga, Aminobacter</em>, and <em>Ralstonia</em>. A metagenomic analysis revealed the presence of genes that encode phosphatase, phosphodiesterase, cytochrome P450, and hydroxylase enzymes, thus indicating their crucial role in EHDPP degradation. Furthermore, we successfully isolated <em>Burkholderia cepacia</em> ZY1, <em>Sphingopyxis terrae</em> ZY2, and <em>Amycolatopsis</em> ZY3 from the 8-ZY consortium, confirming their significance in EHDPP degradation and metabolite formation. These findings underscored the diversity of strains and functional genes responsible for the transformation of EHDPP within the consortium 8-ZY, highlighting the essential role of synergistic interactions during EHDPP biodegradation processes. Molecular docking and dynamics simulation suggested that alkaline phosphatase, cytochrome P450, and hydroxylase stably bonded to EHDPP within their respective active pockets, targeting distinct sites on the EHDPP molecule. These findings provide a comprehensive understanding of the transformation mechanisms of OPEs and contribute valuable insights into their fate in the environment.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"145 4 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123178","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The ubiquitous presence, potential toxicity, and persistence of 2-ethylhexyl diphenyl phosphate (EHDPP) in the environment have raised significant concerns. In this study, we successfully isolate a novel microbial consortium, named 8-ZY, and we demonstrate its remarkable ability to degrade EHDPP using an extremely low concentration of the inoculate. A total of 11 degradation metabolites were identified, including hydrolysis, hydroxylated, methylated, glucuronide-conjugated, and previously unreported byproducts, enabling us to propose new transformation pathways. Further, we unveiled the active members of the microbial consortium 8-ZY during the degradation of EHDPP. We observed the presence of diverse active populations, which included Bradyrhizobium, Rhodopseudomonas, Sphingomonas, Hyphomicrobium, Chitinophaga, Aminobacter, and Ralstonia. A metagenomic analysis revealed the presence of genes that encode phosphatase, phosphodiesterase, cytochrome P450, and hydroxylase enzymes, thus indicating their crucial role in EHDPP degradation. Furthermore, we successfully isolated Burkholderia cepacia ZY1, Sphingopyxis terrae ZY2, and Amycolatopsis ZY3 from the 8-ZY consortium, confirming their significance in EHDPP degradation and metabolite formation. These findings underscored the diversity of strains and functional genes responsible for the transformation of EHDPP within the consortium 8-ZY, highlighting the essential role of synergistic interactions during EHDPP biodegradation processes. Molecular docking and dynamics simulation suggested that alkaline phosphatase, cytochrome P450, and hydroxylase stably bonded to EHDPP within their respective active pockets, targeting distinct sites on the EHDPP molecule. These findings provide a comprehensive understanding of the transformation mechanisms of OPEs and contribute valuable insights into their fate in the environment.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.