{"title":"Vacuum UV-based processes for water and wastewater purification: From unitary to multicomponent systems","authors":"Chuang Wang, Xiaohui Wang, Jinying Du, Renjian Deng, Bozhi Ren, Saijun Zhou, Baolin Hou, Yaoyao huang, Zhiwei Zhao","doi":"10.1016/j.watres.2025.123175","DOIUrl":null,"url":null,"abstract":"Vacuum ultraviolet (VUV) is profitable to strengthen the efficiencies of UV and reduce chemicals use, attracting more attention to water and wastewater purification. Herein, VUV-based water treatment processes from unitary VUV to multicomponent systems were reviewed for the first time to promote VUV applications. The rate of pollutant removal by unitary VUV was 1.3-57 times that of UV, in which hydroxyl radical oxidation was dominant. And the reducibility of hydrated electron and hydrogen atom radical in unitary VUV dehalogenated organics and reduced metal ions. Besides, VUV-based binary systems mainly included processes of VUV/H<sub>2</sub>O<sub>2</sub>, VUV/persulfate, VUV/ozone, VUV/chlorine, VUV/sulfite, VUV/iron ion, and VUV-based heterogeneous oxidation. VUV-based ternary systems basically contained three types: VUV-based Fenton-like, VUV coupling dual oxidants, and VUV combined with other technologies activating oxidants. Performance, characteristics, reactive species, and mechanisms of VUV-based binary and ternary systems were summarized. Moreover, the characterization, contribution, and role of reactive species in VUV-based processes were analyzed, and the combination of multiple methods was conducive to accurately identifying the mechanism of reactive species. Furthermore, the combination of VUV and other technologies expanded the application potential of VUV. Compared to UV-based processes, VUV-based processes significantly reduced energy consumption and were more promising in removing contaminants in actual waters. Finally, hot spots and directions (develop new techniques, reduce by-products, combine simulation and experiment, broaden removal objects, enhance pilot studies) of VUV-based water treatment technologies in future were prospected. Overall, VUV-based advanced oxidation processes are expected to be used in water treatment to improve process efficiency.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"62 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123175","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Vacuum ultraviolet (VUV) is profitable to strengthen the efficiencies of UV and reduce chemicals use, attracting more attention to water and wastewater purification. Herein, VUV-based water treatment processes from unitary VUV to multicomponent systems were reviewed for the first time to promote VUV applications. The rate of pollutant removal by unitary VUV was 1.3-57 times that of UV, in which hydroxyl radical oxidation was dominant. And the reducibility of hydrated electron and hydrogen atom radical in unitary VUV dehalogenated organics and reduced metal ions. Besides, VUV-based binary systems mainly included processes of VUV/H2O2, VUV/persulfate, VUV/ozone, VUV/chlorine, VUV/sulfite, VUV/iron ion, and VUV-based heterogeneous oxidation. VUV-based ternary systems basically contained three types: VUV-based Fenton-like, VUV coupling dual oxidants, and VUV combined with other technologies activating oxidants. Performance, characteristics, reactive species, and mechanisms of VUV-based binary and ternary systems were summarized. Moreover, the characterization, contribution, and role of reactive species in VUV-based processes were analyzed, and the combination of multiple methods was conducive to accurately identifying the mechanism of reactive species. Furthermore, the combination of VUV and other technologies expanded the application potential of VUV. Compared to UV-based processes, VUV-based processes significantly reduced energy consumption and were more promising in removing contaminants in actual waters. Finally, hot spots and directions (develop new techniques, reduce by-products, combine simulation and experiment, broaden removal objects, enhance pilot studies) of VUV-based water treatment technologies in future were prospected. Overall, VUV-based advanced oxidation processes are expected to be used in water treatment to improve process efficiency.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.