{"title":"Mechanically Resilient and Highly Efficient Flexible Perovskite Solar Cells with Octylammonium Acetate for Surface Adhesion and Stress Relief","authors":"Yumeng Xu, Siyu Zhang, Haidong Yuan, Yong Jiao, Xing Guo, Zhaosheng Hu, Xian-gang Hu, Zhenhua Lin, Yue Hao, Liming Ding, Jingjing Chang","doi":"10.1021/acsnano.4c16440","DOIUrl":null,"url":null,"abstract":"Flexible perovskite solar cells (FPSCs) have advanced significantly because of their excellent power-per-weight performance and affordable manufacturing costs. The unsatisfactory efficiency and mechanical stability of FPSCs are bottleneck challenges that limit their application. Here, we explore the use of octylammonium acetate (OAAc) with a long, intrinsic, flexible molecular chain on perovskite films for surface adhesion and mechanical releasing. The results showed that OAAc with high structural flexibility and strong molecular interactions can act as a mechanical release layer in releasing residual tensile stress, confirmed by the film and device characterizations as well as finite-element simulation. Moreover, the passivation of the OAAc could increase the formation energy of defects including I vacancy, Pb vacancy, and Pb–I antisite. The experimental results showed that the trap states of perovskites were significantly suppressed after OAAc modification, which is beneficial to the construction of high-quality films. With a high open-circuit voltage of 1.196 V, the efficiency of the OAAc-treated devices increased from 23.14% to 25.47% on a rigid substrate (23.12% on a flexible substrate), yielding superior long-term and mechanical durability. The corresponding flexible device retains 74% of the initial value even after 8000 bending cycles at a bending radius of 5 mm.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"46 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c16440","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible perovskite solar cells (FPSCs) have advanced significantly because of their excellent power-per-weight performance and affordable manufacturing costs. The unsatisfactory efficiency and mechanical stability of FPSCs are bottleneck challenges that limit their application. Here, we explore the use of octylammonium acetate (OAAc) with a long, intrinsic, flexible molecular chain on perovskite films for surface adhesion and mechanical releasing. The results showed that OAAc with high structural flexibility and strong molecular interactions can act as a mechanical release layer in releasing residual tensile stress, confirmed by the film and device characterizations as well as finite-element simulation. Moreover, the passivation of the OAAc could increase the formation energy of defects including I vacancy, Pb vacancy, and Pb–I antisite. The experimental results showed that the trap states of perovskites were significantly suppressed after OAAc modification, which is beneficial to the construction of high-quality films. With a high open-circuit voltage of 1.196 V, the efficiency of the OAAc-treated devices increased from 23.14% to 25.47% on a rigid substrate (23.12% on a flexible substrate), yielding superior long-term and mechanical durability. The corresponding flexible device retains 74% of the initial value even after 8000 bending cycles at a bending radius of 5 mm.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.