Exploring the degradation of ofloxacin in sewer overflows by Fe(Ⅵ)/PMS, Fe(Ⅵ)/PDS, and Fe(Ⅵ)/SPC: Overlooked synergistic effect of oxidation and in-situ coagulation

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Qian Guo, Zuxin Xu, Wenhai Chu, Yingying Zhou, Xiaoting Gao, Cheng Ye
{"title":"Exploring the degradation of ofloxacin in sewer overflows by Fe(Ⅵ)/PMS, Fe(Ⅵ)/PDS, and Fe(Ⅵ)/SPC: Overlooked synergistic effect of oxidation and in-situ coagulation","authors":"Qian Guo, Zuxin Xu, Wenhai Chu, Yingying Zhou, Xiaoting Gao, Cheng Ye","doi":"10.1016/j.jhazmat.2025.137333","DOIUrl":null,"url":null,"abstract":"Sewer overflows are a potential source of emerging contaminants to urban waters,posing a threat to ecosystems and human health. Herein, the performance and mechanism of ferrate(Ⅵ) (Fe(Ⅵ))/peroxymonosulfate (PMS), Fe(Ⅵ)/peroxydisulfate (PDS), and Fe(Ⅵ)/percarbonate (SPC) for the degradation of ofloxacin (OFL) in overflows were comparatively investigated. These systems achieved efficient degradation of OFL and the removal of conventional pollutants. Particularly, Fe(Ⅵ)/PMS showed better degradation performance for OFL with a degradation efficiency of 98.8%. The dominant reactive oxygen species for OFL degradation in the Fe(Ⅵ)/PMS, Fe(Ⅵ)/PDS, Fe(Ⅵ)/SPC systems were singlet oxygen (<sup>1</sup>O<sub>2</sub>), sulfate radical (SO<sub>4</sub>·<sup>-</sup>), and hydroxyl radical (·OH), respectively. High-valent iron species played an important role in the Fe(Ⅵ)/PMS and Fe(Ⅵ)/PDS systems. Notably, the synergistic effect of oxidation and in-situ coagulation played a key role in OFL degradation, which determined the superior performance of Fe(Ⅵ)/PMS. The formed flocs with Fe-O-P bond acted as a highway to promote the electron transfer from OFL to PMS, resulting in the efficient degradation of OFL in Fe(Ⅵ)/PMS system. Moreover, a same degradation pathway of OFL was found, and the toxicity of the degradation products was reduced, especially in the Fe(Ⅵ)/PMS system. This study provided a new strategy for overflows treatment.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"59 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137333","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sewer overflows are a potential source of emerging contaminants to urban waters,posing a threat to ecosystems and human health. Herein, the performance and mechanism of ferrate(Ⅵ) (Fe(Ⅵ))/peroxymonosulfate (PMS), Fe(Ⅵ)/peroxydisulfate (PDS), and Fe(Ⅵ)/percarbonate (SPC) for the degradation of ofloxacin (OFL) in overflows were comparatively investigated. These systems achieved efficient degradation of OFL and the removal of conventional pollutants. Particularly, Fe(Ⅵ)/PMS showed better degradation performance for OFL with a degradation efficiency of 98.8%. The dominant reactive oxygen species for OFL degradation in the Fe(Ⅵ)/PMS, Fe(Ⅵ)/PDS, Fe(Ⅵ)/SPC systems were singlet oxygen (1O2), sulfate radical (SO4·-), and hydroxyl radical (·OH), respectively. High-valent iron species played an important role in the Fe(Ⅵ)/PMS and Fe(Ⅵ)/PDS systems. Notably, the synergistic effect of oxidation and in-situ coagulation played a key role in OFL degradation, which determined the superior performance of Fe(Ⅵ)/PMS. The formed flocs with Fe-O-P bond acted as a highway to promote the electron transfer from OFL to PMS, resulting in the efficient degradation of OFL in Fe(Ⅵ)/PMS system. Moreover, a same degradation pathway of OFL was found, and the toxicity of the degradation products was reduced, especially in the Fe(Ⅵ)/PMS system. This study provided a new strategy for overflows treatment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信