Prof. Dr. Suguru Ito, Shin Wakiyama, Hao Chen, Masato Abekura, Prof. Dr. Hidehiro Uekusa, Ryoya Ikemura, Prof. Dr. Yoshitane Imai
{"title":"Contrasting Mechanochromic Luminescence of Enantiopure and Racemic Pyrenylprolinamides: Elucidating Solid-State Excimer Orientation by Circularly Polarized Luminescence","authors":"Prof. Dr. Suguru Ito, Shin Wakiyama, Hao Chen, Masato Abekura, Prof. Dr. Hidehiro Uekusa, Ryoya Ikemura, Prof. Dr. Yoshitane Imai","doi":"10.1002/anie.202422913","DOIUrl":null,"url":null,"abstract":"<p>Circularly polarized luminescence (CPL) and mechanochromic luminescence (MCL) have independently made substantial progress in recent years. However, the exploration of MCL in solid-state CPL materials, which holds practical significance, is still in its infancy. Herein, we report the MCL properties of readily accessible chiral pyrenylprolinamides bearing <i>tert</i>-butoxycarbonyl (Boc) or 2,2,2-trichloroethoxycarbonyl (Troc) groups. Enantiopure crystals of the Boc derivative display a greater MCL wavelength shift than racemic crystals, while the Troc derivative exhibit the opposite trend. Most notably, the enantiopure crystals show mechanochromic CPL. Unlike in previous examples, where CPL is quenched upon amorphization, robust CPL spectra were observed even in the amorphous states. By applying the excimer chirality rule, we have, for the first time, acquired insights into the excited-state structures within mechanically generated amorphous states. These findings offer a novel design strategy for developing mechanochromic CPL materials, paving the way for the future advancements in this emerging field.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 11","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202422913","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202422913","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Circularly polarized luminescence (CPL) and mechanochromic luminescence (MCL) have independently made substantial progress in recent years. However, the exploration of MCL in solid-state CPL materials, which holds practical significance, is still in its infancy. Herein, we report the MCL properties of readily accessible chiral pyrenylprolinamides bearing tert-butoxycarbonyl (Boc) or 2,2,2-trichloroethoxycarbonyl (Troc) groups. Enantiopure crystals of the Boc derivative display a greater MCL wavelength shift than racemic crystals, while the Troc derivative exhibit the opposite trend. Most notably, the enantiopure crystals show mechanochromic CPL. Unlike in previous examples, where CPL is quenched upon amorphization, robust CPL spectra were observed even in the amorphous states. By applying the excimer chirality rule, we have, for the first time, acquired insights into the excited-state structures within mechanically generated amorphous states. These findings offer a novel design strategy for developing mechanochromic CPL materials, paving the way for the future advancements in this emerging field.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.