In Situ Anchoring Functional Molecules to Polymer Chains Through Supramolecular Interactions for a Robust and Self-Healing Multifunctional Waterborne Polyurethane

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-01-22 DOI:10.1002/smll.202410933
Chen Zhou, Nana Zhao, Weiqi Liu, Fukang Hao, Mengjie Han, Jinfeng Yuan, Zhicheng Pan, Mingwang Pan
{"title":"In Situ Anchoring Functional Molecules to Polymer Chains Through Supramolecular Interactions for a Robust and Self-Healing Multifunctional Waterborne Polyurethane","authors":"Chen Zhou, Nana Zhao, Weiqi Liu, Fukang Hao, Mengjie Han, Jinfeng Yuan, Zhicheng Pan, Mingwang Pan","doi":"10.1002/smll.202410933","DOIUrl":null,"url":null,"abstract":"Nowadays, much attention is paid to the development of high-performance and multifunctional materials, but it is still a great challenge to obtain polymer materials with high mechanical properties, high self-healing properties, and multifunctionality in one. Herein, an innovative strategy is proposed to obtain a satisfactory waterborne polyurethane (PMWPU-Bx) by in situ anchoring 3-aminophenylboronic acid (3-APBA) in a pyrene-capped waterborne polyurethane (PMWPU) via supramolecular interactions. The multiple functional sites inherent in 3-APBA can produce supramolecular interactions with groups on PMWPU, promoting the aggregation of hard domains in the polymer network, which confers the PMWPU-Bx strength (7.9 MPa) and high modulus (243.2 MPa). Meanwhile, the dynamic natures of boronic ester bonds formed by the condensation of 3-APBA endow PMWPU-Bx with a high self-healing efficiency. Additionally, PMWPU-Bx exhibits fluorescence tunability due to the controlled π–π stacking. In this research, the strategy of anchoring functional molecules onto polymers through supramolecular interactions synchronously achieves the high performance and the multi-functionality of waterborne polyurethanes, but also broadens their potential applications in the fields of optical anticounterfeiting and encrypted information transmission.","PeriodicalId":228,"journal":{"name":"Small","volume":"32 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202410933","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, much attention is paid to the development of high-performance and multifunctional materials, but it is still a great challenge to obtain polymer materials with high mechanical properties, high self-healing properties, and multifunctionality in one. Herein, an innovative strategy is proposed to obtain a satisfactory waterborne polyurethane (PMWPU-Bx) by in situ anchoring 3-aminophenylboronic acid (3-APBA) in a pyrene-capped waterborne polyurethane (PMWPU) via supramolecular interactions. The multiple functional sites inherent in 3-APBA can produce supramolecular interactions with groups on PMWPU, promoting the aggregation of hard domains in the polymer network, which confers the PMWPU-Bx strength (7.9 MPa) and high modulus (243.2 MPa). Meanwhile, the dynamic natures of boronic ester bonds formed by the condensation of 3-APBA endow PMWPU-Bx with a high self-healing efficiency. Additionally, PMWPU-Bx exhibits fluorescence tunability due to the controlled π–π stacking. In this research, the strategy of anchoring functional molecules onto polymers through supramolecular interactions synchronously achieves the high performance and the multi-functionality of waterborne polyurethanes, but also broadens their potential applications in the fields of optical anticounterfeiting and encrypted information transmission.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信