Facile Fabrication of Multifunctional Superhydrophobic Surfaces Synthesized by the Additive Manufacturing Technique Modified with ZnO Nanoparticles

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Thanseeha Sherin P A, Shamili Bandaru, Mallikarjuna Rao Motapothula, Goutam Kumar Dalapati, Sambasivam Sangaraju, Satheesh Krishnamurthy, Writoban Basu Ball, Sabyasachi Chakrabortty, Siddhartha Ghosh
{"title":"Facile Fabrication of Multifunctional Superhydrophobic Surfaces Synthesized by the Additive Manufacturing Technique Modified with ZnO Nanoparticles","authors":"Thanseeha Sherin P A, Shamili Bandaru, Mallikarjuna Rao Motapothula, Goutam Kumar Dalapati, Sambasivam Sangaraju, Satheesh Krishnamurthy, Writoban Basu Ball, Sabyasachi Chakrabortty, Siddhartha Ghosh","doi":"10.1021/acs.langmuir.4c03907","DOIUrl":null,"url":null,"abstract":"This article reports facile fabrication of a multifunctional smart surface having superhydrophobic self-cleaning property, superoleophilicity, and antimicrobial property. These smart surfaces have been synthesized using the stereolithography (SLA) method of the additive manufacturing technique. SLA is a fast additive manufacturing technique used to create complex parts with intricate geometries. A wide variety of materials and high-resolution techniques can be utilized to create functional parts such as superhydrophobic surfaces. Various materials have been studied to improve the functionality of 3D printing. However, the fabrication of such materials is not easy, as it is quite expensive. In this work, we used a commercially available SLA printer and its photopolymer resin to create various micropatterned surfaces. Additionally, we applied a low surface energy coating with ZnO nanoparticles and tetraethyl orthosilicate to create hierarchical roughness. The wettability studies of created superhydrophobic surfaces were evaluated by means of static contact angle using the sessile drop method and rolling angle measurements. The effects of various factors, including different concentrations of coating mixture, drying temperatures, patterns (pyramids, pillars, and eggbeater structures), and pillar spacing, were studied in relation to contact angles. Subsequently, all the functional properties (i.e., self-cleaning, oleophilicity, and antibacterial properties) of the as-obtained surfaces were demonstrated using data, images, and supporting videos. This inexpensive and scalable process can be easily replicated with an SLA 3D printer and photopolymer resin for many applications such as self-cleaning, oil–water separation, channel-less microfluidics, antibacterial coating, etc.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"10 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03907","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This article reports facile fabrication of a multifunctional smart surface having superhydrophobic self-cleaning property, superoleophilicity, and antimicrobial property. These smart surfaces have been synthesized using the stereolithography (SLA) method of the additive manufacturing technique. SLA is a fast additive manufacturing technique used to create complex parts with intricate geometries. A wide variety of materials and high-resolution techniques can be utilized to create functional parts such as superhydrophobic surfaces. Various materials have been studied to improve the functionality of 3D printing. However, the fabrication of such materials is not easy, as it is quite expensive. In this work, we used a commercially available SLA printer and its photopolymer resin to create various micropatterned surfaces. Additionally, we applied a low surface energy coating with ZnO nanoparticles and tetraethyl orthosilicate to create hierarchical roughness. The wettability studies of created superhydrophobic surfaces were evaluated by means of static contact angle using the sessile drop method and rolling angle measurements. The effects of various factors, including different concentrations of coating mixture, drying temperatures, patterns (pyramids, pillars, and eggbeater structures), and pillar spacing, were studied in relation to contact angles. Subsequently, all the functional properties (i.e., self-cleaning, oleophilicity, and antibacterial properties) of the as-obtained surfaces were demonstrated using data, images, and supporting videos. This inexpensive and scalable process can be easily replicated with an SLA 3D printer and photopolymer resin for many applications such as self-cleaning, oil–water separation, channel-less microfluidics, antibacterial coating, etc.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信